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Abstract

Software fault isolation (SFI) is an important technique for
the construction of secure operating systems, web browsers,
and other extensible software. We demonstrate that super-
optimization can dramatically improve the performance of
Google Native Client, a SFI system that ships inside the
Google Chrome Browser. Key to our results are new tech-
niques for superoptimization of loops: we propose a new ar-
chitecture for superoptimization tools that incorporates both
a fully sound verification technique to ensure correctness and
a bounded verification technique to guide the search to op-
timized code. In our evaluation we optimize 13 1ibc string
functions, formally verify the correctness of the optimiza-
tions and report a median and average speedup of 25% over
the libraries shipped by Google.

1. Introduction

Software fault isolation (SFI) is a sandboxing technique to
isolate untrusted code from a larger system [8, 28, 38, 44,
46]. Google Native Client (NaCl), a SFI system shipped
with Google Chrome, safely allows untrusted extensions
to be loaded into the web browser [46]. NaCl has been
shown to be a robust real-world security technology; Google
offers a $15,000 bug bounty for a sandbox escape [1]. SFI
systems use a compiler to produce a specialized binary that
obeys certain syntactic rules. To guarantee security, the SFI
loader invokes a verifier to ensure the binary satisfies these
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rules. Specifically, the rules restrict the addresses of memory
accesses and indirect jump targets at runtime.

However, performance is a “significant handicap” for
SFI [38]. Currently, there is a performance penalty that all
users of NaCl and other SFI implementations pay for the se-
curity guarantees. Building an optimizing compiler for SFI
systems is difficult because of a pronounced phase ordering
problem: Either a compiler can generate well-formed SFI
code and then optimize it for performance, or it can generate
optimized code and adjust it to obey the SFI rules. Both of
these approaches lead to sub-optimal performance. More-
over, without verification, the optimizations have no formal
guarantees of correctness [26, 30].

In contrast, search-based program optimization tech-
niques start with a compiled farget program, and attempt
to search for a semantically equivalent rewrite with better
performance characteristics. These tools, sometimes called
superoptimizers or stochastic superoptimizers, make ran-
dom modifications to the target code to generate candidate
rewrites. The rewrites are evaluated with a cost function
that estimates correctness, performance, and other proper-
ties. Correctness is generally estimated by running the code
on test cases (either provided by the user or generated au-
tomatically). After an improved rewrite is found, a sound
verification technique is used to verify correctness.

Superoptimization techniques address the phase-ordering
problem by simultaneously considering a program’s merit
according to all desired criteria. Our hypothesis is that su-
peroptimization can significantly improve SFI code gener-
ated by existing toolchains and offer a formal guarantee that
the optimizations are correct. We demonstrate our hypothe-
sis holds by optimizing frequently-used, and often perfor-
mance critical, 1ibc string functions that ship with NaCl
(see Section 5). This paper focuses on the technical problems
we needed to solve to extend superoptimization techniques
to this new domain.

The key obstacle in applying existing superoptimization
techniques to NaCl is simply the presence of loops in NaCl
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Figure 1: Search architecture of different stochastic superoptimization tools.

code. While prior work [39] extended superoptimization to
small loop kernels of up to ten lines of x86-64 code, the
loops that appear in real code are larger. We attempted to use
the STOKE tool [36, 39] for our initial NaC1 superoptimizer.
However, there are three general problems which caused the
baseline STOKE to fail to optimize loops in NaCl code.

First, the search was guided exclusively by handwrit-
ten test cases. For small examples these tests suffice. How-
ever, more complex programs often have corner cases infre-
quently exercised by such tests. Past work on synthesizing
straight-line code uses counterexamples from verification to
guide the search (see Figure 1b). However, there is no gen-
eral method for generating counterexamples from sound ver-
ification procedures for loops. The little existing work on
search-based optimization of loops does not use automat-
ically generated counterexamples when correctness proofs
fail (see Figure la), greatly limiting its ability to generate
correct rewrites.

The second problem with our baseline implementation
was an unexpected bias toward finding high-performance
rewrites which were unlikely to be correct. The goal of the
search is to find the fastest possible program that passes all of
the test cases. Unsurprisingly, running the search for longer
generally produces more performant results: the fastest dis-
covered program is usually the last one found. However,
faster programs are also more likely to be overfitted to the
test cases, and the search component has no mechanism to
distinguish between correct and incorrect programs when
both pass all tests. Retaining only the fastest such rewrite
usually results in failure during verification.

Our solutions to these first two problems are simple, gen-
eral, and result in dramatic improvements to our loop op-
timizer. We introduce a two-stage verification process with
both a bounded verifier and a sound verifier, as shown in Fig-
ure lc. A bounded verifier performs a partial proof of equiv-
alence. For a user-supplied bound parameter k, it checks
whether the target ¢ and the rewrite r agree on all inputs for
which every loop in each program executes for at most k it-
erations. If the check fails then the bounded verifier produces
a counter-example demonstrating the difference. Otherwise,
the programs are equivalent up to the bound £ and the dif-
ferences (if any) can only be demonstrated by running the

bounded verifier with a higher k. In contrast, the sound veri-
fier performs a sound proof of equivalence. Proving equiva-
lence of two loops involves discovering and checking suffi-
ciently strong loop invariants, which is fundamentally differ-
ent from the approach taken by the bounded verifier. It is not
obvious how to generate counterexamples from failed proofs
of equivalence, nor is it even possible to do so in general.

We integrate the bounded verifier into the search loop
to guide the search and identify the best rewrites. The
stochastic search procedure generates successively improv-
ing rewrites that pass all of the current test cases and are esti-
mated to perform better than the target. For each of these, we
run the bounded verifier; if the bounded verifier accepts the
rewrite, we add the rewrite to a store of candidate rewrites
to formally verify later. Once the complete set of candidate
rewrites is generated, we run the sound verifier on each of
them, starting with the ones expected to perform best, until
a provably correct rewrite is found. If, however, the bounded
verifier fails, it generates a counterexample which is used
as a new test case and is added to the running search. This
approach helps guide the search from an incorrect rewrite to
a correct one when the initial set of test cases is insufficient.

A limitation of bounded verification techniques is that
their automatically generated test cases usually only run for a
very small number of loop iterations. Consequently, we still
require an initial set of longer-running tests to evaluate the
performance of a rewrite. However, it is no longer necessary
for user-supplied test cases to cover corner cases to guide
the search to a semantically correct rewrite. The test cases
we use in our experiments are generated randomly, rather
than being hand-tuned as in previous work. The need for
test cases to characterize performance is analogous to profile
directed optimization [4, 9].

The third problem is the exponential growth in the num-
ber of aliasing cases that may be required to reason about
memory. The number of ways the memory accesses in two
programs can overlap grows rapidly with the number of
memory accesses, and every possible case must be consid-
ered. Past authors use source code information, static anal-
ysis, or offload the problem to the SMT solver. In our case,
our tool does not have access to source code information and
writing new abstract semantics for each x86-64 instruction



is prohibitively time-consuming. We instead introduce alias
relationship mining, a new technique which uses test data
to soundly reduce the number of aliasing cases by several
orders of magnitude. Alias relationship mining allows our
verifiers to handle more difficult examples reliably without
timing out. Our initial implementation based on a standard
flat memory model [45] was much less predictable.

To evaluate our work, we implemented our new architec-
ture as an extension to STOKE. We evaluate our implemen-
tation on a collection of 13 libc string functions shipped
with the NaCl toolchain. We have chosen to focus on string
and array benchmarks for three reasons. First, they are ubig-
uitous in assembly code; any real attempt at optimizing x86-
64 assembly must handle them. Second, there are many ap-
plications where string and array functions are the chief per-
formance bottleneck. Third, they present a real challenge,
especially due to the possibility of arbitrary memory aliasing
in the generated rewrites. However, none of our techniques
are specialized to string functions; our tool does not depend
on the data structures a program uses.

The formally verified binaries generated by STOKE im-
prove performance on these production benchmarks by up
to 97%, with a median and average of 25%. We also show
that alias relationship mining increases the number of veri-
fication tasks that can be completed. In summary, this paper
makes the following contributions:

e We demonstrate that stochastic superoptimization has a
significant advantage over conventional compiler tech-
nology in optimizing SFI binaries. We achieve a median
speedup of 25% across 13 1libc binaries shipped with
NaCl by Google. Our optimized binaries may be used as
a drop-in replacement and are backed with a guarantee of
formal equivalence to the original code.

We introduce a new and robust architecture for stochastic
program search for code containing loops. Our approach
combines a bounded verifier with a sound verifier for
proving loop equivalence. This is the first application of
stochastic superoptimization to a real-world domain of
loop functions.

We describe alias relationship mining, a novel technique
to use data from test cases to improve the performance of
a bounded verifier that handles potentially aliased mem-
ory locations soundly.

We detail enhancements to DDEC, the sound verifica-
tion algorithm for proving loop equivalence introduced
in [39]. DDEC is part of both our baseline and improved
implementations. The enhancements make verification
more robust in the presence of complex control flow.

The rest of the paper is organized as follows. Section 2
illustrates the operation of the bounded verifier on a NaCl
code example. Section 3 details the implementation of the
bounded and sound verification techniques. Section 4 dis-
cusses the extensions to STOKE required for generating

NaCl code. In Section 5, we demonstrate our contributions
empirically. We conclude with a summary of related work in
Section 6 and closing remarks in Section 7.

2. Motivating Example

Figure 2 is an example of a target and an incorrect rewrite
we use to demonstrate the utility of bounded verification
in search. Adapted from the wcpcpy libc routine (string
copy for wide character strings), the target is equivalent to
the following C code. Note that, even though the platform is
64-bit, NaCl treats all pointers as 32-bit. This example uses
32-bit wide characters.

wchar* wcpcpy(wchar* edi, wchar* esi) {
wcharx eax;
do {
wchar edx = *esit+;
eax = edi;
*edi++ = edx;
} while (edx != 0);
return eax;

}

The target and rewrite code in Figure 2 both obey the
NaCl rules. In x86-64, an instruction is composed of an
opcode and one or more operands. The opcode describes
the functionality of an instruction, e.g., mov, add, etc. The
suffix (e.g. 1 or q) denotes the width of the operands. An
operand specifies what values to operate on. The operand
can be a register (such as %eax), a memory operand (such as
(%r15,%rdi)) or an immediate (a constant, like $4). Some
details are:

e The register j%edi points to the destination string and
%esi points to the source string. The x86-64 ISA has 64-
bit registers %rdi, %rsi, %r15, etc. The register %edi
represents the lower 32 bits of %rdi. The mov instruction
copies bits in the first argument to the second argument.
Any instruction that writes to a 32-bit register also zeros
the top 32 bits of the corresponding 64-bit register. For
example, line 2 of the target leaves the lower 32 bits of
%rsiunchanged and zeros the top 32 bits. This operation
is important for the memory dereference at line 3 to be
valid; NaCl requires memory operands to be of the form
k1 (%r15,X ,ko), where X is a 64-bit register whose
top 32 bits are cleared by the previous instruction. This
operand represents accessing memory at address k1 +
%115 + ko X. When unspecified, k1 = 0 and kg = 1.

e The jne on line 10 of the target redirects the control flow
to line 1 if %edx is nonzero and to line 11 otherwise.
A jmp redirects control flow unconditionally. NaCl has
rules on instruction alignment. Hence, multi-byte no-ops
are added. The notation nop (X) denotes a series of no-
op instructions occupying X bytes.



# Target # Rewrite
1 .begin: movl esi, esi
2 movl esi, esi movl (ri15,rsi), edx
3 movl (ri15,rsi), edx addl 4, esi
4 movl edi, eax nop (23)
5 addl 4, esi .begin:
6 movl edi, edi movl edi, eax
7 movl edx, (ri5,rdi) movl edi, edi
8 addl 4, edi movl edx, (r15,rdi)
9 testl edx, edx shrl 1, edx
10 jne .begin je .exit
11 retq movl esi, esi
12 movl (ri15,rsi), edx
13 addl 4, esi
14 jmpq .begin
15 nop (31)
16 .exit:
17 retq

Figure 2: A target and rewrite for wcpcpy. The code is
ATT syntax with % and $ prefixes removed for space. This
benchmark performs a string copy of 4-byte wide characters.

® The je on line 10 of the rewrite jumps to the . exit label
when %edx is O after the shift operation.

In the target there are two basic blocks, sequences of straight-
line code delimited by labels and jumps: lines 1-10 (14); and
line 11 (2;). In the rewrite, there are four: line 1-4 (1,.); lines
5-10 (2,); lines 11-14 (3,.); and the exit on lines 16-17 (4,).
A path through the program is a sequence of basic blocks
that may be exercised by some input.

The rewrite code is almost correct, except that it com-
putes the wrong jump condition. On line 9, it shifts the reg-
ister %edx to the right by one, and branches if the result is
zero. However, the target simply checks if %edx is zero; the
rewrite is incorrect when the value of %edx is exactly one. In
practice, if a wide string contains the character 0x00000001,
then the target performs the entire copy, but the rewrite stops
early.

STOKE uses a cost function to guide it toward correct
rewrites. To evaluate a rewrite, it runs it on inputs provided
by the user. In previous work, if none of the user-provided
inputs contains the character 0x00000001 (which is rarely
used in practice) the search will not be guided away from
this rewrite. This example is a realistic case where search,
even guided by a robust collection of test cases, may still
propose incorrect rewrites. We run the bounded verifier on
rewrites that pass all test cases. When the bounded verifi-
cation succeeds, the search continues; when it fails, we use
the new counterexample as a test case which will guide the
search away from the incorrect rewrite.

2.1 Bounded Verifier

The bounded verifier works as follows. For a given bound &,
we enumerate the set of all possible paths through the target
t and the rewrite r where no basic block repeats more than k

times. For k£ = 1, there is only one path for each: p; = 1;2;
and ¢y = 1,2,4,. For £k = 2, we have p, = 1,1;2; and
q2 = 1,2,.3,2,-4,, in addition to p; and ¢;.

For each target path p and rewrite path ¢, the bounded
verifier checks if there is any input = for which the target
executes path p, the rewrite executes path ¢, and the outputs
of the two programs differ. In this case, the outputs are the
return register %rax and the heap contents. If the two paths
are infeasible, meaning there is no input x for which ¢ exe-
cutes p and r executes ¢, then the check is vacuously true.
The bounded verifier builds a collection of constraints that
express, as logical formulas, the relationships between the
input 2 and the outputs of each program (Section 3.2). Infor-
mally, we construct functions fj,(x) and f,(x) representing
the outputs of executing paths p and ¢ on an input x. Path
conditions g,(x) and g,(z) are predicates that express if
paths p and q are taken on input . Then, we use the Z3 SMT
solver [13] to check if 3x.g, () A gg(x) A fp(z) # fo(z). If
such an z exists, then we have generated a counterexample
which can be used as a new test case for the search. Other-
wise, ¢ and r are equivalent for all inputs that execute paths
p and q.

For k = 1 the bounded verification succeeds because the
two programs are equivalent for the empty string. For k = 2,
the bounded verifier checks equivalence for all runs execut-
ing the loops up to two times. When it compares ps to ¢, it
produces a counterexample: for the input string with two 4-
byte characters, the first one having value 0x00000001 and
the second being a null character, the target and rewrite dif-
fer, as described earlier. This counterexample is then used as
anew test case.

2.2 Alias Relationship Mining

Consider the sub-task of proving the equivalence of paths ps
and g2, which corresponds to performing a string copy on
4-byte wide character strings where the input has only one
non-null character followed by a null terminating character.
We explicitly unroll the code along these paths as shown in
Figure 3. When these paths are taken, there are eight memory
accesses in total, four in the target (labeled a,b,c,d) and
four in the rewrite (labeled a’, b, ¢, d’). In this example, the
accesses are in one-to-one correspondence; when executed,
the addresses accessed by the target are always the same
as those accessed by the rewrite. Moreover, accesses a and
c always refer to the consecutive 4-byte wide characters
in the source string; similarly b and d refer to consecutive
characters in the destination.

It would be tempting, but incorrect, to model the memory
with four 4-byte non-overlapping pseudo-registers, one for
each pair of corresponding accesses. The problem is that the
source and destination strings may overlap, which happens
when the initial state satisfies %rsi— %rdi= ¢, for —8 <
€ < 8. Thus, we must consider 15 cases, one for each value
of ¢, and then one more when the strings do not overlap.
Each case corresponds to an aliasing configuration, which



# Target # Rewrite

movl esi, esi movl esi, esi

movl (ri15,rsi), edx #a movl (r15,rsi), edx #a’
movl edi, eax addl 4, esi

addl 4, esi nop (23)

movl edi, edi movl edi, eax

movl edx, (r15,rdi) #b movl edi, edi

addl 4, edi movl edx, (ri15, rdi) #b’
testl edx, edx shrl 1, edx

movl esi, esi movl esi, esi

movl (ri15,rsi), edx #c movl (ri15,rsi), edx #c’
addl 4, esi addl 4, esi

movl edi, edi movl edi, eax

movl edx, (r15,rdi) #d movl edi, edi

addl 4, edi movl edx, (r15, rdi) #d4°’
testl edx, edx shrl 1, edx

retq retq

Figure 3: A target and rewrite for wcpcpy unrolled for input
strings of length 2 (including null-terminator). The code
is ATT syntax with % and $ prefixes removed for space.
Accesses a, a’ read the first source character; b, b’ write this
character into the destination; c, ¢’ read the second (null)
character; and finally d,d’ write the null character into the
destination.

is a description of how the memory accesses overlap. For a
given aliasing configuration, we can model the memory as a
set of pseudo-registers. Therefore, to prove equivalence over
p2 and g2, we must run a total of 16 queries to the SMT
solver, one for each possible aliasing configuration.

Past work on STOKE models memory by enumerating
all possible aliasing configurations, which very quickly be-
comes intractable: There are over 50 million aliasing config-
urations for eight 4-byte memory accesses if we do not use
the relations described above (e.g. a,a’ alias, a, ¢ are con-
secutive, etc.). This approach makes verification infeasible
for all but the smallest examples. For example, the DDEC
validator in [39] took two hours to validate two assembly se-
quences with less than 10 LOC and two dereferences each.
We introduce a technique called alias relationship mining
(ARM) which constructs a minimal set of aliasing configu-
rations required to perform the proof.

In ARM we run the unrolled target and rewrite on a set
of concrete test cases to learn these aliasing relationships.
Let A(u) denote the symbolic address of memory access p.
In our example, we learn the following from concrete data:
A(a) = A(d), A(b) = A(b), A(c) = A(d), Ad) =
A(d"), A(c) = A(a)+4, A(d) = A(b)+4. We verify these
relationships by translating them into bitvector formulas and
verifying their validity with the SMT solver. For example,
A(a) = %r15 + %rsi and A(c) = %r15 + %rsi + 4, so
to verify that A(c) = A(a) + 4, we query the SMT solver
with %r15 + %rsi + 4 # (%r15 + %rsi) + 4; when
the solver reports “unsat”, this proves the relationship holds.
We use the verified relationships to model the memory state

for paths p, ¢ with pseudo-registers. In this example, we use
two: an 8-byte register for accesses a,a’, c,c’ and another
for b,b’,d,d'. These two pseudo-registers may or may not
overlap; we have to invoke the bounded validator a total of
16 times, one for each possible aliasing configuration. For
details, see Section 3.2.

3. Implementation

This section describes the implementation of the bounded
verifier, the alias relationship mining procedure, and the
sound verifier.

3.1 Bounded Verifier

The bounded verifier takes a target ¢ and a rewrite r and
proves equivalence over a finite set of paths specified by a
user-provided bound k. We generate sets of paths Path and
Pathp, through the target and the rewrite such that no basic
block is repeated more than k times. For each p € Pathy,q €
Pathg, we check that p and ¢ are equivalent for all inputs that
execute these two paths.

More formally, let = denote a state, a collection of sixteen
64-bit bitvectors (one for each general purpose register) and
five boolean variables (one for each x86-64 flag). Memory
is modeled as a set of pseudo-registers as described in Sec-
tion 3.2. For each instruction s in our supported subset of the
x86-64 instruction set we have a function o that describes
the semantics of executing s on a state x [23]. Suppose path p
executes instructions s}, ..., st through the target and path
g executes instructions s, ..., s, through the rewrite. Let
xo and yo denote the start states of p and ¢. Then we gen-
erate the constraint C' = C1 A Cy A C3 A Cy A Cs A Cg,
where:

C1 = zy = yo constrains the input states to be equal. C5
represents the execution of the target through p, i.e.,

m
Co=2p =2 N /\ T; = Usg(»’ﬁi—l)
i=1

Cs represents the execution of the rewrite through ¢:

n
Cs = Yf = Yn N\ /\ Yi = a'sf(yz'—l)
=1

C, encodes path conditions; if s! is a conditional jump jf
.L (jump to .L if flag £ is set) and the basic block follow-
ing this instruction in p is labeled by .L then we generate
a constraint asserting that £ is set at x;_;. Otherwise, we
assert that f is unset at ;1. We do the same for the path ¢
through r and conjoin all of these constraints. Cs = x5 # yy
encodes that the output states of p and ¢ differ on the out-
put registers or the final heap state. Cg is a conjunction of
constraints that bound the address a of each memory deref-
erence between 16 < a < 254 — 16. Counter-examples with
very small and very large addresses are generally invalid.



We pass C to the Z3 SMT solver. A model for zy can be
used as a test case demonstrating that the target and rewrite
differ. If C' is unsatisfiable, then the equivalence over p and
q is proved and the bounded verifier analyzes the next pair
of paths.

3.2 Alias Relationship Mining

The unique contribution in our design of the bounded veri-
fier is an efficient and sound approach to prove equivalence
in the presence of possibly aliased memory locations. Given
fixed-length paths p and q through the target and rewrite our
goal is to model every memory access as a read or write
to a set of pseudo-registers. The first step is to enumerate
statically all the memory accesses, as done in Figure 3 of
Section 2.2. On a single execution of each path, we know
that each memory dereference will only be run once. The
problem is that we do not know if two accesses will ref-
erence the same memory location, different locations, or if
they will partially overlap. We use test cases x1, ..., 2, to
learn aliasing relationships between the different accesses.
Let A(p) denote the symbolic representation of the address
dereferenced by access y; we derive A(u) through symbolic
execution of p and g. For a pair of accesses p and v an alias-
ing relationship is a statement of the form A(u) — A(v) = e,
where € is an integer constant.

Let A;(u) denote the concrete address of memory access
i when p or ¢ is run on test case x;. For each pair of
memory accesses, i+ and v, we check if the concrete values
€; = Aj(n) — A;(v) are constant for all j. If so, then we
infer the aliasing relationship A(u) — A(v) = e. We then use
the SMT solver to check if this statement is always valid. In
the absence of test cases, an alternate technique is to use a
domain-specific heuristic to guess a superset of relationships
of the form A(u) — A(v) = e that may hold and then use the
SMT solver to check them.

Once finished, we have a set of verified relationships of
the form A(n}) — A(vf) = €f. We place the memory ac-
cesses into equivalence classes, where the related accesses
w1f and v are in the same class. Memory accesses in the
same class are at a fixed offset to each other. We can model
the memory used by all the accesses of one class with a
fixed-size pseudo-register. Each access corresponds to read-
ing or writing a sub-range of this pseudo-register. These
pseudo-registers may overlap; we explicitly enumerate all
the ways they may do so, and invoke the bounded validator
once for every such aliasing configuration.

Alias relationship mining is well suited to data-driven
systems such as STOKE where learning relationships from
test data is easy. There is a great deal of existing work in the
symbolic execution, program analysis and bounded model
checking communities on memory models (see Section 6),
and there are other approaches to avoiding worst-case be-
havior in analyzing aliasing. However, our approach is ad-
vantageous for our application for several reasons. First, we
had no need to write a new set of per-instruction abstract

semantics to perform a separate pointer analysis; this task
is a prohibitively time consuming for the x86-64 instruction
set. Second, we accurately handle cases where pointers alias.
Most importantly, it scales better than the flat memory model
that we implemented with Z3; see Section 5.

3.3 Sound Validation

Our sound verifier uses a strict definition of equivalence
that is sensitive to termination, exceptions and memory side-
effects. Let O be a set of output registers, and consider any
program state x. We say that ¢ is equivalent to r if, when we
run ¢ and 7 on x, exactly one of the following holds:

1. the target and rewrite both loop forever;
2. the target and rewrite both trigger a hardware exception;

3. the target and rewrite both execute to completion and
terminate normally and the final states agree on output
registers in O and all memory locations.

To perform sound verification, we extend previous work
on data-driven equivalence checking (DDEC) [39], which
uses test cases to guess a simulation relation between the
target and the rewrite. An SMT solver is used to check the
correctness of the simulation relation. If verified, the proof
is complete.

The simulation relation is composed of cutpoints and
invariants. A cutpoint is a pair of corresponding program
points in the target and rewrite. Each cutpoint X\ has an as-
sociated invariant 1, that describes the relationship between
states of the target and rewrite at A. Our goal is to prove
inductiveness; whenever we begin executing the target and
rewrite from cutpoint A on states x and y satisfying ¥, the
execution of the target and rewrite will both reach the same
next cutpoint X in states =’ and v’ satisfying 1)y:.

We make the following improvements to the DDEC al-
gorithm:

e When checking the inductiveness of the simulation rela-
tion using an SMT solver, DDEC enumerates all possible
aliasing configurations, which is prohibitively expensive.
We use alias relationship mining to dramatically improve
the efficiency of this step.

DDEC can lose precision because it does not support dis-
junctive or inequality invariants, and its invariants never
reason over memory. We add support for register-register
inequalities, a restricted set of disjunctions and invari-
ants that assert a memory location is null. The additional
precision is necessary to reason about branch conditions.
DDEC had not previously been demonstrated on com-
plete functions with multiple loops and branches.

¢ In some cases, invariants we learn from data are spurious.
In [39] this would cause DDEC to fail. In this work,
we have added fixedpoint iterations to eliminate spurious
invariants.



3.3.1 Choosing Cutpoints

The choice of cutpoints illustrates the correspondence be-
tween target and rewrite data that we use to learn an invari-
ant. We use three types of cutpoints in the DDEC algorithm:

® a unique entry cutpoint at the entry to the program;
® a unique exit cutpoint at the exit of the program; and

e at least one loop cutpoint in every loop.

We model each program as having only one exit block,
and transform every return statement as a jump to this block.
To identify appropriate loop cutpoints, we perform a brute
force enumeration of sets of pairs of program points. A set
of cutpoints is valid if it satisfies four conditions: First, when
the target and rewrite are executed on input x, they must
reach the same cutpoints in the same order. Second, at each
cutpoint, the heap-state of the target must agree with the
heap-state of the rewrite. Third, there must be at least one
cutpoint per loop. Finally, we only allow program points at
the end of basic blocks to be cutpoints; this decision simpli-
fies the implementation and makes the space of cutpoints to
search smaller.

In some cases, DDEC fails with one set of cutpoints but
succeeds with another. Therefore, if DDEC fails we run the
algorithm again with a different cutpoint selection until all
the possibilities are exhausted.

3.3.2 Learning Invariants

For each cutpoint A\, we guess a set of candidate invariants
1) that relate the state of the target to the state of the rewrite
when ) is reached. Given data from test cases (provided by
the user or generated from counterexamples during search),
we build a set S of reachable state pairs (x;,y;) at A. The
invariant learning algorithm has two steps; first, we partition
Sy = S)U---USE based on control flow. Second, we learn
the strongest set of predicates in our language of invariants
that hold over each S5.

The partitioning is done based on control flow to de-
rive useful disjunctive invariants. Suppose that the target and
rewrite both have a conditional jump at X. Let C and C, de-
note predicates over states that express if the target (rewrite)
take the conditional jump. Then we derive four partitions
of S corresponding to the different control flow outcomes
for each state pair. Let Cy = Ci A C%, C3 = CL A CY,
Cy = C{L ACY and C} = Ci A C5. Define partitions
S5 = {(xi,yi) € Sx : C (x4, v:)}. If the target (or rewrite)
does not have a conditional jump we merge the appropriate
partitions. _

For each set S{ we learn the strongest set of invariants
over pairs of states. These invariants are of the form Cﬁ =0,
where the 6 come from five classes of invariants as illus-
trated in Figure 4: (i) 64-bit affine bitvector equalities over
registers; (ii) register-register inequalities; (iii) disequalities
asserting a register is non-null; (iv) equalities asserting mem-

Invariant ==Y Airi = Apgr | 11 <ro | 71 <1y
| r#0 | *xmem=0 | r[64:32] =0

Figure 4: Language of invariants used by DDEC algorithm. r
is used to denote a 32 or 64-bit general purpose register and
A denotes a bitvector constant. xmem denotes a memory
dereference. r[64 : 32] denotes the top 32 bits of a 64-bit
register.

ory is null; (v) assertions that the top 32-bits of a 64-bit reg-
ister are null.

Given S} we find the strongest set of invariants in the
language that hold over all state pairs. We use a dedicated
algorithm for affine bitvector equalities, and a standard al-
gorithm for the remaining invariant classes. The bitvector
equality algorithm is as follows:

e L et L denote the set of live registers in the target and
rewrite. Number these registers 0, . .., |L| — 1.

¢ Build matrix M of size S| x |L].
e Set M;; to the value of register j in state pair (z;, y;).

e Apply Gaussian elimination adapted to bitvector arith-
metic [14] to find a basis for all possible 64-bit affine
equalities.

The other invariants can be learned from the test cases
directly; for example, we check if for some column the top
32-bits of a register are zero in all the rows of the matrix; or,
for each pair of registers 71,7y if the relationship r; < 72
always holds. For each 6; we have learned from S5 we add
the invariant Cﬁ = 0, to the candidate invariant set ).
Additionally, at every A we add in invariant asserting the
target and rewrite have identical heap states.

3.3.3 Inductiveness Check

We use the bounded verifier to perform the inductiveness
checks soundly and efficiently. The candidate invariant 1)y
is a set of predicates of the form C§ = 6;. If some C3 = 6;
is not inductive then it is removed from v and the process
is repeated until all remaining predicates are inductive. This
process mimics the fixedpoint iterations performed by Hou-
dini [18]. The fixedpoint iterations help discard any predi-
cates that hold for the test cases but cannot be guaranteed
to hold for all possible inputs. After reaching the fixedpoint,
if the invariant established at the program exit cutpoint im-
plies that the output states are equivalent then we have suc-
cessfully established the equivalence of the target and the
rewrite.

4. STOKE for Google Native Client

The goal of STOKE’s search algorithm is to find a rewrite
that obeys the NaCl rules and produces the same outputs as



the target on a given set of test cases. We extend the STOKE
superoptimizer for this purpose.

At a high level, STOKE search is parametrized by the
following: a search space of all possible rewrites, a cost func-
tion that uses test cases to identify preferable rewrites, and a
set of transformations that can be applied to transform one
rewrite in the search space to another. We run the search with
a fixed number of iterations. In each iteration, we generate a
new rewrite and evaluate a cost function. Depending on the
cost, we either accept or reject the rewrite. For rewrites with
lowest seen cost, we run the bounded verifier; if the bounded
verifier says the target is equivalent to the rewrite, we add it
to the output set of candidate rewrites.

To adapt STOKE for NaCl, we need to design an appro-
priate cost function to guide the search and add transforma-
tions relevant for NaCl to the existing transformations used
by STOKE. These are described in the following subsec-
tions.

4.1 Transformations

Optimizing NaCl code requires more aggressive transfor-
mations compared to the ones described in previous works
that use STOKE [36, 39, 40]. In particular, previous work
made no changes to the control flow. In this work, we relax
this constraint and allow changes to jump instructions. We
use opcode moves, local and global swaps, and instruction
moves as described in [39]. Additionally, we include the fol-
lowing transformations:

1. Operand moves replace an operand of an instruction with
a different one. This move also allows for jump instruc-
tions to change their targets. E.g., jmpq .L1 can be trans-
formed to jmpq .L42.

2. Rotate moves move an instruction to a different place in
the program.

3. Opcode width moves change an opcode and its operands
to a similar instruction that operates on a different bitwidth.
E.g., 32-bit addl %eax, %ebx can be transformed to
64-bit addq %rax, %rbx.

4. Delete moves remove an instruction entirely.
5. Add nop moves insert an extra nop into the program (x).

6. Replace nop moves replace an instruction with a string of
nops whose binary representation has the same length of
the original instruction ().

7. Memory+Swap moves replace a memory operand and
simultaneously swap the preceding instruction with an-
other one. (x)

A (%) denotes a transformation specific to NaCl. The
Memory+Swap move is necessary because NaCl requires
that the index of a memory operand is computed by the pre-
ceding instruction. Modifying either instruction alone is very
likely to break this relationship. Therefore, there is a need
for a single transformation that changes both simultane-

ously. The add and replace no-op moves help STOKE meet
the alignment requirements of NaCl code. These specialized
transforms required only 227 lines of additional C++ code.

4.2 Cost Function

A cost function produces a score for each rewrite, where
lower values are better. The cost function guides the search
towards desirable rewrites. As described earlier, well-formed
NaCl code must obey certain rules, such as those on instruc-
tion alignment and memory accesses.

The NaCl cost function assigns a score of zero to well-
formed NaCl code. To compute the penalty of alignment vi-
olations, we compute the minimum number of no-op bytes
which must be added to or removed from the rewrite for it to
follow the alignment constraints. To this end, we use a dy-
namic programing algorithm. For an n-instruction rewrite,
we build an n x 32 matrix M where M;; contains the mini-
mum number of no-ops to be inserted or removed to align the
ith instruction to j bytes beyond a 32-byte boundary while
following all NaCl rules. The row M, can be constructed
from row M;. The minimum value in row M, is the align-
ment penalty. We also add fixed penalties (of value 100) for
each ill-formed memory accesses, or the use of instructions
unsupported by NaCl. We call the sum of these penalties the
nacl score.

For functional correctness, we follow previous work [36]:
we run the rewrite on test cases and compare its outputs to
those of the target on the same test cases. The correctness
score is the Hamming distance between these outputs. Fi-
nally, the cost function includes a performance score. Pre-
vious work on STOKE uses a static approximation of per-
formance. We compute a more accurate performance score
by running the code in a sandbox on test cases and estimat-
ing the total runtime by summing precomputed latencies of
each executed instruction. This score is more accurate be-
cause it is sensitive to the number of loop iterations. The
precomputed latencies come from running an instruction in
isolation on one core.

For each rewrite, the total cost is a weighted sum of cor-
rectness, performance, and nacl scores. For our benchmarks,
we find the following function works well:

nacl < §

Feo v * correctness + nacl + performance
~ * correctness + 7 * nacl + performance nacl > §

We choose v = 105,6 = 5,17 = 25. We do not believe
that the particular constants are special; rather, a variety of
different cost functions may work. We leave evaluating dif-
ferent designs of cost functions for future work. The imple-
mentation of this cost function required 434 lines of C++
code.



Benchmark Target  Best Best Search DDEC
LOC LOC Speedup Time (min) Time (min)
wcpepy 40 13 48% 37 38
wcslen 43 47 97% 78 89
wmemset 47 47 0% 29 45
wcsnlen 94 51 2% 61 83
wmemcmp 91 77 47% 360 302
wcschr 87 28 2% 61 5
strxfrm 99 38 0% 81 414
wcesemp 108 29 47% 38 586
wmemchr 132 75 2% 67 30
wescepy 35 40 25% 276 252
wescat 89 90 26% 360 46
strepy 70 63 30% 360 415
wcsrchr 178 178 0% 30 15
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Figure 5: Speedups by benchmark. For each benchmark, the
speedup over the original NaCl library is shown. The bars
correspond to the optimization experiment, the translation
experiment, and the best rewrite we verified. The ‘optimiza-
tion mode’ much more reliably produces a verifiable result,
but ‘translation mode’ sometimes offers significant improve-
ments.

5. Evaluation

We use 13 1ibc string functions from the newlib library
shipped with Google Native Client to evaluate our exten-
sions to STOKE. We performed all experiments on ma-
chines with two Intel Xenon E5-2667v2 3.3GHz processors
and 256GB of RAM.

We evaluate our work in three categories. First, we
demonstrate that we can optimize these benchmarks and
achieve formally verified NaCl code with a median and av-
erage speedup of 25%. Then, we compare the baseline im-
plementation with our new system that uses the bounded
verifier. Finally, we compare the performance of the alias
relationship mining to the flat memory model.

5.1 Experiment Setup

Our goal is to improve the performance of each of the 13
libc string functions and prove correctness of the optimized
code. For each benchmark we perform two experiments, op-
timization and translation. In optimization mode, we initial-
ize the rewrite with the code shipped with NaCl and run
STOKE to improve its performance while maintaining com-
pliance with the NaCl rules. In translation mode, the rewrite
is initialized with code that does not comply with NaC1 rules
and STOKE transforms it into well-formed NaCl code. For
each benchmark, we assembled test cases from randomly
generated strings.

Table 1: Performance results for verified benchmarks. LOC
shows how many lines of assembly codes in the target pro-
gram. “Best LOC” and “Best Speedup” show the number
of lines of code and the speedup for the best rewrite found.
The search time includes both search and bounded verifier
queries for the optimization mode task. The DDEC time
shows the total time required to complete all sound verifi-
cation tasks in optimization mode.

The initial rewrite for the translation mode experiments is
gcc—4.9 code compiled for x86-64 with memory accesses
systematically rewritten to follow NaCl rules on memory ac-
cesses; every access is written as a load-effective-address in-
struction to compute the sandboxed 32-bit pointer followed
by a separate instruction that performs the dereference. The
transformation helps STOKE find a rewrite faster, but it is
naive and breaks correctness, degrades performance, and vi-
olates the alignment rules. However, starting here, STOKE
is sometimes able to correctly translate such programs to
correct and efficient NaCl code.

For each benchmark, we ran the search up to 15 times
for 200,000 iterations each. We set a timeout of 6 hours
on a single core per benchmark. This time is split between
running search iterations and performing bounded verifica-
tion to generate the candidate rewrites; summing across all
benchmarks, about 2/3 of this time is spent in search, and
1/3 in bounded verification. All bounded verification is per-
formed with a bound of k¥ = 1. For each of the search runs,
we run the sound DDEC verifier with a timeout of one hour
on each candidate rewrite, in order of best expected perfor-
mance, until we find one that verifies. Statistics on the bench-
marks are in Table 1.

5.1.1 Performance Results

The performance results are shown in Figure 5 and Table 1.
The improvements range from 0% (for wcsrchr) to 97%
(for wcslen). The optimization and the translation results
are incomparable. For some benchmarks, it is easier to opti-
mize code that meets NaCl rules and for others it is easier to
translate already optimized code to valid NaCl code. How-
ever, the optimization experiment always succeeds (meaning
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Figure 6: End-to-end search and verification success rates. For each benchmark, the total height of the bar shows the number
of candidate rewrites found during search. We apply the sound verifier to each candidate. The “success” measure shows how
many verification tasks succeeded; the “fail” measure shows how many failed. In optimization mode, we always find verified
results with the alias relationship mining model, but not with the flat memory model. Note that the memory model affects the
search in addition to the verification, because it impacts which counterexamples are generated.

we find a verified rewrite expected to be faster), while for
several benchmarks the translation experiment fails.

There were three common sources of optimizations. First,
as seen in Section 2, many of the functions shipped with
NaC1 include instructions such as mov1l %eax, %eax; these do
not perform any useful computation and their only purpose
is to satisfy the NaCl rules on memory sandboxing (this in-
struction zeros the top 32 bits of the %rax register). STOKE
is often able to use instructions, such as addl $4, %eax
that meet the sandboxing constraints and perform necessary
computations. Significant speedups are obtained when this
change results in removal of an instruction inside a loop.
This situation arises with the wcslen benchmark, where a
speedup of nearly 2x is achieved for removing a single un-
necessary instruction. Second, executing no-op instructions
consumes processor cycles and STOKE is sometimes able
to move several no-op instructions outside of a loop to pro-
duce speedups. The original code has no-ops because NaCl
enforces alignment rules, and moreover Google’s NaCl com-
piler is overly conservative: it aligns every jump to a 32-byte
boundary instead of only indirect jumps. Table 1 shows that
even though code size was not measured in the cost func-
tion, STOKE reduced the aggregate code size by about 30%.
Third, although gcc generally does well, STOKE some-
times improves register allocation and instruction selection.

In the case of wcscmp, with a translation mode speedup of
47%, both removing no-ops and improving the use of sand-
boxing instructions made the code much smaller — 29 lines

down from 108. In the target, the loop contained 40 instruc-
tions (mostly no-ops), but the translation mode rewrite loop
contains only 10. This reduction has a significant impact at
the architectural level; we believe this change allowed the
processor’s loop stream detector to optimize code execution.

5.1.2 Verification Results

In optimization mode, STOKE always finds and verifies a
rewrite for every benchmark. However, the translation mode
benchmarks infrequently produced a verified rewrite, for
two reasons. First, the translation mode search starts with
a program that does not obey NaCl rules, and the search has
to fix this discrepancy before it can produce any rewrite. As
a result, it may take much longer for the translation mode
experiment to find a first rewrite.

Second, the start program for translation mode is seman-
tically different from the target. We used gcc-4.9 with full
64-bit pointers, while the NaCl compiler uses 32-bit point-
ers. As a result, bitwidths for different instructions differed
between the target and the rewrite. In many cases, the search
would produce rewrites that were almost correct; they would
be equivalent for all input strings of up to 2GB in size, but
would fail for larger strings. Often, an unsigned length was
treated as a signed value, and vice-versa. The bounded veri-
fier could not guide the search in these cases because it could
only produce small test cases. However, the DDEC verifier
rejects such “almost correct” rewrites. Yet sometimes, the
code generated by gcc-4.9 is closer to a fast rewrite than



the code generated than the NaCl compiler, and we obtain
strong performance results.

Figure 6 shows end-to-end results for search and verifi-
cation, including the number of candidates from search, and
the number of verification successes and failures. The veri-
fication failures were for two reasons. In only one case, the
verification timed out on a correct rewrite; this instance is for
wepepy in translation mode. For the other 180 failures, the
candidate rewrite was indeed not equivalent; this problem
was particularly frequent for translation mode benchmarks
as described in the previous paragraph. In 20 of these 180
cases, the rewrite was both incorrect and the solver timed
out. It is to be expected that incorrect rewrites are more likely
to cause a timeout because the modified DDEC algorithm
will continue to search for more cutpoints until they have all
been exhausted or time expires. In no cases did the verifi-
cation fail for a correct rewrite, meaning our choice of cut-
points and loop invariants were sufficient.

One observes that the 180 cases where sound verification
failed due to an incorrect candidate rewrite contradicts the
often-assumed ““small scope hypothesis™ [2, 24, 31]. This hy-
pothesis says that if the program is correct for small inputs,
then it is likely correct for larger inputs too. This hypothesis
fails for our domain of simple 1ibc string functions. Often
the bugs are very subtle and only appear for large inputs;
without the sound validator, we are unlikely to find them.

5.2 Comparison to Baseline Implementation

We re-ran the experiment using our baseline implementa-
tion. The baseline implementation does not use the bounded
verifier at all. Instead, the search runs for a fixed number of
iterations and returns the best rewrite that passes all the test
cases. Then, the sound verifier is used to check for correct-
ness. We ran the experiment once with the alias relationship
mining (ARM) memory model and once with the flat model.

With the baseline implementation and ARM memory
model we only obtain results for four benchmarks in op-
timization mode, namely wcpcpy, wcscmp, wmemchr, and
strcpy, with corresponding speedups of 48%, 47%, 2%,
and 0%. For the other 9 benchmarks the search results could
not be verified because they were incorrect. Without the
bounded validator, we only obtain an average speedup of
7%. Across all 13 benchmarks, the bounded verifier im-
plementation with ARM generates 168 verified rewrites of
varying performance, but the baseline implementation with
ARM only generates 23.

The baseline does poorly for two reasons. First, there is
no bounded verifier to help guide the search. Second, the
search only returns the rewrite with the best performance
estimate, and discards the potentially valuable intermediate
results that are more likely to be correct.

Figure 7 shows aggregate statistics for four different im-
plementations: the baseline and bounded verifier implemen-
tations, each run with the ARM and flat memory models.
The median and mean speedups are shown, along with the
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Figure 7: Comparison of implementations. For each of four
implementations, the median and mean best speedups are
plotted across the 13 benchmarks in translation and opti-
mization modes. The number of benchmarks where an im-
proved result was found (maximum is 26 considering opti-
mization and translation mode), and the number of candi-
date rewrites generated by the search is also shown. These
last two figures are plotted against a log scale. Using the
bounded verifier to generate a stream of candidate rewrites
substantially improves the quality of the rewrites; using alias
relationship mining also improves the number and quality of
verified rewrites.

total number of benchmarks with a verified result (counting
both optimization and translation mode), and the total num-
ber of verified rewrites found. Using a bounded validator and
ARM yields an 8.3x improvement on mean speedup over the
baseline implementation with a flat memory model.

5.3 Memory Model Performance

The key difference between alias relationship mining and the
flat memory model is that ARM reasons about the aliasing
of memory locations outside the SMT solver, while the flat
memory model offloads this work to Z3. Consequently, the
performance of the flat model is subject to the peculiarities
of the implementation of the underlying solver. We find that
the flat model outperforms ARM in many small examples,
but doesn’t scale predictably. ARM scales more gracefully
and can handle a larger proportion of the verification tasks.
Figure 6b shows success rates for search and verification
when the flat memory model is used instead of ARM. The
wmemset benchmark is of particular interest. Out of the 13
successful runs, the search generated 66 candidate rewrites.
Of these, 49 invocations of DDEC timed out after 1 hour.
The other 17 candidates failed to verify because of errors
in the rewrites. On the same set of 49 verification tasks that
timed out, running DDEC with ARM succeeds, and each one

Mumber Rewrites



finishes in under 6 minutes. Similarly, ARM succeeds on
five of the translation mode benchmarks but the flat model
only succeeds on three of these. In particular, the flat model
times out on the wcscmp benchmark while ARM succeeds;
this benchmark also is the one with the greatest performance
improvement in translation mode.

As a separate benchmark, we took 1128 DDEC verifica-
tion tasks derived from search outputs and performed verifi-
cation twice, once with the alias relationship mining model,
and once with the flat model. We find that the flat model
timed out (after one hour) on 180 of them, but the ARM
model timed out on only 24. However, for the verification
problems where both models succeeded, the flat model had
a better average time of 24s per task compared to ARM with
average time 554s per task.

6. Related Work

The techniques used in our work are related to several lines
of research, including symbolic execution, bounded model
checking, translation validation and binary analysis. Our
work is most related to the area of stochastic program search.

Superoptimization. This paper most directly advances
work on superoptimization. The original superoptimization
paper by Massalin and even some recent works check for
correctness using test cases alone [29, 37]. Other authors
have used formal verification techniques for straight-line
code [21, 25, 36]. More recently, DDEC made verification
of loops in a superoptimization setting possible, but did not
generate new test cases to guide the search and used an inef-
ficient memory model; thus, it couldn’t scale beyond pro-
grams ten lines long [39]. LENS [27] formulates stochas-
tic search for straight-line code over graphs and offers im-
provements over [36]. This work is the first work that allows
for end-to-end verification of superoptimized loops in a real-
world setting.

Equivalence Checking is an old problem with an exten-
sive literature. Several works develop equivalence checking
algorithms for low level code, but they do not handle un-
bounded loops, and often use a flat memory model [3, 12,
16, 17, 41]. Regression verification [19] compares two suc-
cessive versions of a program and has been applied to integer
programs [15]. Abstract Semantic Differencing [32] proves
(partial) equivalence of loops. However, it uses numerical
domains that are inapplicable to the bitvector arithmetic in
x86-64 assembly.

Binary Analysis. Many authors have developed tools for
static analysis of x86-64 code, including symbolic execution
tools [7, 10, 42]. Our bounded verifier is similar to several
of these tools. Rudder is a symbolic execution tool which
used to find security bugs in x86-64 binaries. They also sup-
port two memory models, a flat model [6], and a model that
proves bounds on addresses a memory access can derefer-
ence [43]. Both are sound with respect to aliasing. The latter
model is similar to alias relationship mining but yields less

precise information. CODESURFER/X86 is a static analysis
tool for x86 that uses value set analysis to derive memory
aliasing information. VSA gives precise results for strided
intervals; however, it requires implementing value set se-
mantics for each instruction [5]. SYMDIFF has been used
to verify the equivalence of x86-64 code generated by dif-
ferent compilers [22], but makes unsound assumptions. In
particular, the treatment of aliasing is unsound and the reg-
ister values are treated as unbounded mathematical integers
rather than as bitvectors.

Translation Validation. Translation validation [20, 30,
34] verifies the equivalence of a program before and after
a compiler’s optimization pass. Necula’s work [30] is akin
to our sound verification in that it infers and checks a sim-
ulation relation between the two programs. A difference is
that Necula constructs the simulation relation through static
analysis and information provided by the compiler, whereas
we derive the simulation relation from data.

Bug Finding and Symbolic Execution. There are sev-
eral bug finding tools that cross check implementations and
report differences. These tools bound the number of loop it-
erations and are similar in function to our bounded verifier.
For example, UC-KLEE [35] tests equivalence of code using
symbolic execution, but handles cases where pointers alias
unsoundly. Differential symbolic execution (DSE) and Cur-
rie [11, 33] handle pointer aliasing soundly, but model com-
mon parts of programs with uninterpreted functions to re-
duce the complexity of the constraints. This abstraction isn’t
suited for STOKE because it may result in false-positives,
and the target and rewrite may not have enough similarity to
gain a benefit.

7. Conclusion

In this paper we extend stochastic superoptimization to the
domain of software fault isolation. Our key contribution is a
new technique for superoptimization of loop kernels, featur-
ing both a bounded and a sound validator, and alias relation-
ship mining, a novel technique to improve the scalability of
verification in the presence of aliased memory. We demon-
strate that these advances produce efficient and formally ver-
ified NaCl code.
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