
Discrete Mathematics, Algorithms and Applications
c© World Scientific Publishing Company

An Efficient Algorithm for Deriving

Summation Identities from Mutual Recurrences∗

BERKELEY R. CHURCHILL

Department of Mathematics, University of California, Santa Barbara
Santa Barbara, California 93117, United States of America

EDMUND A. LAMAGNA

Department of Computer Science and Statistics, University of Rhode Island, Kingston

Kingston, Rhode Island 02881, United States of America

This paper closes an algorithmic problem of summing a set of mutual recurrence relations

with constant coefficients. Given an order d system of the form A(n) =
∑d

i=1 MiA(n−
i)+G(n), where A,G : N→ Km and M1, . . . ,Md ∈Mm(K) for some field K and natural
number m, this algorithm computes the sum

∑n
i=0 A(i) as a K-linear combination of

A(n), . . . , A(n − d), the initial conditions and sums of the inhomogeneous term G(n).

The runtime of this algorithm is shown to be polynomial in m and d.

Keywords: mutual recurrence; summation; computer algebra

1. Problem Statement

An important task in computer algebra systems is evaluating indefinite sums, that

is computing values sn =
∑n

k=0 ak where the ak is some sequence depending only

on k. Today many functions can be summed, in part due to the pioneering work of

several researchers [5], [7], [9]. Nonetheless, there are still countless instances where

we lack algorithms to sum particular expressions, or the algorithms that exist are

inefficient or produce undesirable outputs.

One area of interest is summing recurrence relations. Summing any ak is a special

case of computing the value of An where An = An−1 +an and A0 = a0. Recurrence

relations arise frequently in algorithm analysis and numerical analysis of differential

equations. The classical example is the Fibonacci sequence, defined as a function

F : N→ N given by F (n) = F (n− 1) +F (n− 2) ∀n ≥ 2 with F (0) = 0, F (1) = 1.

It is well knowna that this sequence satisfies the property
∑n

i=0 Fi = Fn+2 − 1.

This identity is nice because it presents the sum in terms of the original Fibonacci

symbol. An even trickier situation is a system of linear recurrences, often referred

∗This work was supported in part by the National Science Foundation under a Research Experi-

ences for Undergraduates (REU) grant, NSF Award No. 1004409.
aThe proof is by induction. F (0) = F (2) − 1 holds true. Suppose

∑n
i=0 Fi = Fn+2 − 1 and add

Fn+1 to both sides of the equation to verify the formula.

1

2 Berkeley R. Churchill and Edmund A. Lamagna

to as mutual recurrences in the literature. Consider the following example:

A,B : N→ Q satisfy A(n+ 2)−A(n+ 1)−A(n)−B(n) = 1 and −A(n) +B(n+

2) − B(n + 1) − B(n) = 1 with A(0) = B(0) = 0 and A(1) = B(1) = 1. How

could one write an algorithm that computes an identical expression for
∑n

i=0A(i)

in terms of the symbols A and B themselves? In this paper we present an algorithm

which can compute the sums of a mutual recurrence in a closed form any time the

inhomogeneous term can be summed repeatedly.

2. Related Work

The primary inspiration for this work is Ravenscroft and Lamagna’s work on sum-

mation of a single linear recurrence. They provide an efficient algorithm to ex-

press the sum of a homogeneous recurrence A(n) =
∑d

i=1miA(n − i) in terms of

A(n− d), . . . , A(n− 1) by using a “summing factor” to deal with recurrences that

initially appear to be degenerate. They also provide a technique that handles some

inhomogeneous terms [10].

Several authors study summing C-finite sequences (those determined by recur-

rence relations with constant coefficients). Greene and Wilf provide an algorithm to

sum a general form of products of C-finite sequences [6]. Kauers and Zimmermann

study determining whether summation relationships exist between different C-finite

sequences [8].

Work on P -finite sequences (those determined by recurrence relations with poly-

nomial coefficients) has also been done. Abramov and van Hoeij discuss summing

P -finite sequences in terms of the original coefficients [1]. Chyzak generalizes the

works of Gosper [5] and Zeilberger [13] to sum P -finite sequences that are not hy-

pergeometric [3]. Schneider extends Karr’s approach [7] to P -finite sequences as well

[11].

Recently, [2] demonstrates that our problem regarding systems of mutual recur-

rences can be solved in the first order case, along with some other special cases. In

this paper we demonstrate a reduction from the general problem to the first order

case, and then provide a self-contained description of the algorithm.

3. Systems of Mutual Recurrences

Definition 3.1 (Mutual Recurrence). Let K be a field, and m, d ∈ Z+. A

system of mutual linear recurrence relations with constant coefficients on K of or-

der d in m variables is a set of m functions A1(n), . . . , Am(n) mapping N into K

satisfying

A1(n)

A2(n)
...

Am(n)

 = M1

A1(n− 1)

A2(n− 1)
...

Am(n− 1)

+ · · ·+Md

A1(n− d)

A2(n− d)
...

Am(n− d)

+

g1(n)

g2(n)
...

gm(n)

Deriving Summation Identities from Mutual Recurrences 3

for some M1, . . . ,Md ∈ Mm(K) and g1, . . . , gm mapping N → K. Typically we

will refer to this as a “mutual recurrence”.

We call the vector containing the gi(n) the inhomogeneous term, and this vector

is typically denoted by G. If this inhomogeneous term is zero, the mutual recurrence

is homogeneous. We call the values {Ai(j) : 1 ≤ i ≤ m, 0 ≤ j < d} the initial

conditions for the recurrence. The notation in this definition is used throughout the

paper whenever a specific mutual recurrence is being considered.

Example 3.2. We will use the following example of a mutual recurrence to demon-

strate computational procedures throughout the paper. For this example m = 2,

so for convenience we use A(n) to denote A1(n) and B(n) to denote A2(n).

A(n) = 2A(n− 1) +B(n− 1), B(n) = A(n− 1) + 2B(n− 2).

This may be written in the form stated in the definition as

(
A(n)

B(n)

)
=

(
2 1

1 0

)(
A(n− 1)

B(n− 1)

)
+

(
0 0

0 2

)(
A(n− 2)

B(n− 2)

)
+

(
0

0

)
.

Here the order is d = 2 and, coincidentally, m = 2 as well. �

4. Reduction to d = 1 Case

Summing a general mutual recurrence can be reduced to the d = 1 case. Let

A1, . . . , Am be a mutual recurrence of order d. Define Bi,j(n) = Ai(n + d − j)

for 1 ≤ i ≤ m and 1 ≤ j ≤ d. Then for j > 1, Bi,j satisfies Bi,j(n) =

Ai(n + d − j) = Bi,j−1(n − 1). For each i, Bi,1 may be written as a sum of

Span{Bi′,j′ : 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ d} and an inhomogeneous term. The ini-

tial conditions can be taken from the initial conditions for the original system;

Bi,j(0) = Ai(d− j). The Bi,j(n) is a first-order system of mutual recurrences in K,

and
∑n

j=0Ai(j) =
∑n

j=0Bi,d(j). The representation of the new system has exactly

one coefficient matrix of dimension m× d. A naive implementation can derive each

element in this matrix with O(1) operations, so the total time for this reduction is

O(md). This process is identical to the well-known method of transforming linear

systems of differential equations with constant coefficients into first-order systems.

Example 4.1. Following Example 3.2, define W (n) = A(n + 1), X(n) =

A(n), Y (n) = B(n+1) and Z(n) = B(n). This gives the following system of mutual

recurrences:

W (n) = 2W (n− 1) + Y (n− 1)

X(n) = W (n− 1)

Y (n) = W (n− 1) + 2Z(n− 1)

Z(n) = Y (n− 1).

4 Berkeley R. Churchill and Edmund A. Lamagna

Solving this system provides the solutions to the original;
∑n

i=0A(i) and∑n
i=0B(i) are exactly the same as

∑n
i=0X(i) and

∑n
i=0 Z(i). �

5. Summing First Order Mutual Recurrences

Consider a mutual recurrence of the form X(n) = MX(n− 1) +G(n), where

X(n) = (A1(n) A2(n) · · · Am(n))t,

G : N → K is an inhomogeneous term and M ∈ Mm(K). The goal is to

compute
∑n

j=0Ai(j) for each i ∈ {1, . . . ,m} and express the answer in terms of

Span{Ai(n − j) : 1 ≤ i ≤ m, 0 ≤ j ≤ 1}, the initial conditions, and an inhomo-

geneous term. For any function f : N → K define S(f(n)) =
∑n

i=1 f(i). S will

be known as the summation operator. Recursively define Sj
i (n) = S(Sj−1

i (n)) and

S1
i (n) = Si(n) = S(Ai(n)). This operator corresponds to the notion of summing

that allowed Ravenscroft and Lamagna to symbolically sum linear recurrences [10].

It becomes convenient to factor the mutual recurrence into a matrix product as

follows. In the following equation, the leftmost matrix is a block matrix, while the

others are not. The following equation is identical to the definition provided earlier.

(I −M)

A1(n)

A2(n)
...

Am(n)

A1(n− 1)

A2(n− 1)
...

Am(n− 1)

= G.

Since we will be computing Sj
i for many values of i and j, it becomes useful to

expand this equation. Let k be a non-negative integer. The k-padded representation

of the mutual recurrence is the matrix equation

Deriving Summation Identities from Mutual Recurrences 5

(0 0 · · · 0 |I −M)

Sk
1 (n)
...

Sk
m(n)

...

S1(n)
...

Sm(n)

A1(n)
...

Am(n)

A1(n− 1)

A2(n− 1)
...

Am(n− 1)

= G.

To simplify notation, equations of the above form are written as an augmented

matrix,

(0 0 · · · 0 | I −M | G).

The S operator now deserves some attention. Let V be a vector space over K

with basis β = {Ai(n − j) : 1 ≤ i ≤ m, 0 ≤ j ≤ 1} ∪ {Sj
i (n) : 1 ≤ i ≤ m, j ∈ N}.

Throughout our work S will only be applied to functions of the form v(n) + i(n)

where v ∈ V and i(n) is an inhomogeneous term that depends only on n, and

never on any function of the Ai. Because S is linear, to understand S we need

only understand how S acts on β; summing the inhomogeneous parts yields other

inhomogeneous parts, and this may be accomplished via other methods [5], [7], [9].

From the definitions, we already know S(Sj
i (n)) = Sj+1

i (n). The others are

not hard to compute as S(Ai(n − j)) = Ai(1 − j) + Ai(2 − j) + · · · + Ai(n −
j) =

∑0
k=1−j Ai(k) +

∑n
k=1Ai(k)−

∑n
k=n−j+1Ai(k) = Si(n)−

∑n
k=n−j+1Ai(k) +∑0

k=1−j Ai(k). Therefore, applying S to a function of the form v(n) + i(n) yields

another function of the form v(n) + i(n).

Notice that a row from an augmented matrix corresponds to an equation for

the form v(n) = i(n) for some v ∈ V and inhomogeneous function i. Summing

both sides of the equation and moving all inhomogeneous parts to the right-hand

side gives v′(n) = i′(n) for some new v′ ∈ V and inhomogeneous i. This can be

re-written as a row of the matrix. This is the procedure of applying the summation

operator to a row.

Example 5.1. Suppose we have this row of an augmented matrix corresponding

to a first order mutual recurrence with m = 2,

6 Berkeley R. Churchill and Edmund A. Lamagna

(0 0 3 5 | − 2 6 0 0 | n+ 4).

This row corresponds to the equation

3S1(n) + 5S2(n)− 2A1(n) + 6A2(n) = −n− 4.

Applying the summation operator to each side yields

3S2
1(n) + 5S2

2(n)− 2(S1(n)−A1(0)) + 6(S2(n)−A2(0)) = −1

2
n(n+ 1)− 4n,

and this is re-written as the augmented matrix row

(
3 5 − 2 6

∣∣∣∣ 0 0 0 0

∣∣∣∣ 1

2
n2 +

9

2
n+ 2A1(0)− 6A2(0)

)
.

�

In the following we will explicitly demonstrate the action of the summation

operator on an augmented matrix. Suppose we start with

(
0 0 · · · 0 Bj Bj−1 · · · B1 C1 C2 G

)
where B1, . . . , Bj and C1, C2 are m×m matrices. In the expanded matrix equa-

tion,Bj is multiplied by the block matrix containing the Sj
1(n), . . . , Sj

m(n) as rows. A

row of their product is therefore a linear combination of Sj
i (n). Applying the sum-

mation operator creates an identical linear combination of Sj+1
1 (n), . . . , Sj+1

m (n).

The same logic applies to Bj−1, . . . , B1. In block matrix form, all the B1, . . . , Bj

appear to be shifted one block to the left after applying the summation operator.

The result looks like

(
0 0 · · · 0 Bj Bj−1 · · · B1 ∗ ∗ ∗ ∗

)
.

To determine the block matrix represented by the leftmost asterisk, consider

when Si(n) appears in the image of the S operator; it appears once for every oc-

currence of Ai(n− j) (for any j ∈ N) in the preimage. This implies C1 + C2 is the

value of the leftmost asterisk.

For the kth asterisk to the right of the separator, the number of Ai(n − k) in

the image of S is given by the negation of the number of Ai(n− l) in the preimage,

where l > k. This result can be stated as a lemma.

Lemma 5.2. Given an augmented block matrix of the form

(
0 0 · · · 0 Bj Bj−1 · · · B1 C1 C2 G

)

Deriving Summation Identities from Mutual Recurrences 7

applying S to each row yields a new block matrix

(
0 0 · · · 0 Bj Bj−1 · · · B1 C1 + C2 −C2 0 G′

)
where G′ is some column matrix of inhomogeneous functions.

Starting with a k-padded representation of a mutual recurrence, we can apply

the summation operator to each row up to k times. This is in addition to the

standard row operations. Another permissible row operation is to duplicate a row

of the left-hand matrix and the corresponding row of the inhomogeneous matrix.

The goal is to start with a k-padded representation of a recurrence, and use row

operations to put the augmented matrix into the form

(0 0 · · · 0 I | ∗ ∗ | ∗)

where ∗ denotes any matrix. Then one can back-substitute to compute identities

Sj(n) = v(n) + i(n) for each 1 ≤ j ≤ m, where v ∈ V and i is inhomogeneous.

6. Summation Algorithm

The following algorithm uses the above operations to solve this summation problem.

Algorithm 6.1.

Input: An order t mutual recurrence with s equations.

Output: Summation identities for each recurrence.

1. Apply the reduction algorithm from Section 4 to derive a first order mutual

recurrence with m = st equations. Let M be the coefficient matrix.

2. Compute µ(x), the minimal polynomial of M .

3. Count the number of factors of (x− 1) in µ(x) and call it k.

4. Compute the augmented matrix of the k+1-padded representation of the matrix.

5. Consider the entire augmented matrix as a single block row and duplicate it k

times, so there are a total of k + 1 block rows. Number the block rows from top

to bottom starting at 1.

6. For 1 ≤ i ≤ k + 1, apply S to the (k + 2− i)th block row i times.

7. Compute the row-reduced echelon form of the resulting matrix.

8. For 1 ≤ i ≤ m, solve for Si(n) via backsubstitution.

9. Backsubstitute the solutions to the first order mutual recurrence into the original

mutual recurrence.

Theorem 6.2. The algorithm is correct.

Proof.

After duplicating the block rows of the matrix, the matrix is

8 Berkeley R. Churchill and Edmund A. Lamagna

0 · · · 0 I −M G

0 · · · 0 I −M G
...

. . .
...

...
...

...

0 · · · 0 I −M G

 .

Using Lemma 5.2, applying the summation operator the appropriate number of

times leaves a (k + 4)m× (k + 1)m matrix

M − I −M 0 0 · · · 0 0 0 ∗

0 M − I −M 0 · · · 0 0 0 ∗
0 0 M − I −M · · · 0 0 0 ∗
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · M − I M 0 ∗

 .

All that is left to show, and the crux of the proof, is that row-reducing the

square matrix on the left, Z, leaves a block identity matrix in an appropriate spot

for back-substitution. Let µ(x) be any polynomial such that µ(M) = 0. By the

Cayley-Hamilton theorem, the characteristic polynomial of M may be taken for µ.

We regard µ ∈ K[x] and can write µ(x) = µkx
k + µk−1x

k−1 + · · ·µ1x + µ0 for

some µi ∈ K, but define for any X ∈ Mm(K), µ(X) = µkX
k + · · · + µ1X + µ0I.

k is the greatest nonnegative integer such that (x − 1)k divides µ(x) and write

µ(x) = (x− 1)kq(x) for some q(x) ∈ K[x]. We define q(X) for a matrix X the same

way we did for µ. Notice that this allows us to perform the division algorithm with

polynomials over matrices in the sense that, for any polynomial g ∈ K[x], there

exist polynomials s, r ∈ K[x] such that q(X) = g(X)s(X) + r(X), where the degree

of r is less than the degree of g. This works because sums and products of a single

matrix X freely commute with each other.

Label the block rows of the matrix from top to bottom starting at 1. For 1 ≤ i ≤
k, multiply the row by (M − I)k−iM i−1q(M). In the first block row, the leftmost

block entry becomes µ(M) = (M − I)kq(M) = 0. For all subsequent rows i ≤ k,

the leftmost non-zero block entry equals the entry above it; namely the leftmost

non-zero block in row i is (M − I)k−i+1Mk−1q(M). In row k, the rightmost block

entry is −Mkq(M) and the entry below it is still M−I. At this point, row reducing

the matrix only leaves all the entries of the matrix nonzero except for these two, so

Z ∼

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 Mkq(M)

0 · · · 0 M − I

 .

Deriving Summation Identities from Mutual Recurrences 9

Using the division algorithm, write q(M) = (M−I)s(M)+αMp for some α ∈ K,

p ∈ N and s ∈ K[x]. Notice that α 6= 0, for if it were not then (x − 1)|q(x) which

would contradict its definition. Multiply the bottom row by s(M)Mk and subtract

from the row above. Divide the above row by α. This leaves the matrix

Z ∼

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 Mp+k

0 · · · 0 M − I

 .

Finally multiply the bottom row of the matrix by (Mp+k−1+Mp+k−2+· · ·+M1)

and subtract from the top row. This leaves the entry Mp+k− (Mp+t−k +Mp+k−2 +

· · ·+M1)(M − I) = M in that row. Negate the bottom row and add the other row

to derive I in the bottom right corner of the matrix.

Theorem 6.3. The algorithm runtime is polynomial in m and d, not counting

the time taken for summing the inhomogeneous terms. m denotes the number of

recurrence relations, and d denotes the maximal order of the mutual recurrence.

Proof. Let ω be the exponent for matrix multiplication, that is the smallest known

value so that two n×n matrices can be multiplied in O(nω) time. Necessarily ω ≥ 2.

As of this writing, the best known value for ω is 2.376 [4].

The reduction from the general case to the first-order case requires O(md) time.

The minimal polynomial of the matrix may be computed in O((md)ω) time using

an algorithm by Storjohann [12]. Counting the factors of (x − 1) can be done by

dividing the minimal polynomial by (x − 1) at most md times, for a total of at

most O(m2d2) operations. Since the minimal polynomial divides the characteristic

polynomial, the number of factors, k, is at most md.

Constructing the (k + 1)-padded representation of the recurrence, duplicating

rows, and summing requires O(mk) ⊂ O(m2d) time; there are O(mk) entries in the

matrix and each entry can be determined in constant time, less the time taken to

sum inhomogeneous terms. Row-reducing the matrix requires O((mk)ω) time. The

back-substitution can be performed in O(mk) time.

The row-reduction dominates the asymptotic time of all the other steps, so the

algorithm runs asymptotically as fast as multiplying two mk ×mk matrices. This

is bounded by O((m2d)ω).

References

[1] Abramov, S.A., van Hoeij, M.: Desingularization of linear difference operators with
polynomial coefficients. In: Dooley, S. (ed.) International Symposium on Symbolic
and Algebraic Computation. pp. 269–275. ACM, New York, NY, USA (1999)

10 Berkeley R. Churchill and Edmund A. Lamagna

[2] Churchill, B.R., Lamagna, E.A.: Summing symbols in mutual recurrences. In: Fu, B.,
Du, D.Z. (eds.) Computing and Combinatorics, Lecture Notes in Computer Science,
vol. 6842, pp. 531–542. Springer Berlin / Heidelberg (2011)

[3] Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic func-
tions. Discrete Mathematics 217(1-3), 115–134 (April 2000)

[4] Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J.
Symb. Comput. 9, 251–280 (March 1990)

[5] Gosper, Jr., R.W.: Decision procedure for indefinite hypergeometric summation. In:
Proceedings of the National Aacademy of Sciences USA. vol. 75, pp. 40–42 (January
1978)

[6] Greene, C., Wilf, H.S.: Closed form summation of C-finite sequences. Transactions
of the American Mathematical Society 359, 1161–1189 (2007)

[7] Karr, M.: Summation in finite terms. Journal of the ACM 28(2), 305–350 (April 1981)
[8] Kauers, M., Zimmermann, B.: Computing the algebraic relations of C-finite sequences

and multisequences. Journal of Symbolic Computation 43(11), 787–803 (2008)
[9] Moenck, R.: On computing closed forms for summation. In: Proceedings of the MAC-

SYMA User’s Conference. pp. 225–236 (1997)
[10] Ravenscroft, Jr., R.A., Lamagna, E.A.: Summation of linear recurrence sequences.

In: Milestones in Computer Algebra. pp. 125–132 (2008)
[11] Schneider, C.: A new sigma approach to multi-summation. Advances in Applied

Mathematics 34(4), 740–767 (May 2005)
[12] Storjohann, A.: Deterministic computation of the frobenius form. In: Proceedings of

the 42nd IEEE symposium on Foundations of Computer Science. pp. 368–. FOCS
’01, IEEE Computer Society, Washington, DC, USA (2001)

[13] Zeilberger, D.: A fast algorithm for proving terminating hypergeometric series iden-
tities. Discrete Mathematics 80(2), 207–211 (March 1990)

