An Efficient Algorithm for Deriving
Summation Identities from Mutual Recurrences

BERKELEY R. CHURCHILL
Department of Mathematics, University of California, Santa Barbara
Santa Barbara, California 93117, United States of America

EDMUND A. LAMAGNA
Department of Computer Science and Statistics, University of Rhode Island, Kingston
Kingston, Rhode Island 02881, United States of America

This paper closes an algorithmic problem of summing a set of mutual recurrence relations with constant coefficients. Given an order d system of the form $A(n) = \sum_{i=1}^{d} M_i A(n-i) + G(n)$, where $A, G : \mathbb{N} \rightarrow K^m$ and $M_1, \ldots, M_d \in M_m(K)$ for some field K and natural number m, this algorithm computes the sum $\sum_{i=0}^{n} A(i)$ as a K-linear combination of $A(n), \ldots, A(n-d)$, the initial conditions and sums of the inhomogeneous term $G(n)$.

The runtime of this algorithm is shown to be polynomial in m and d.

Keywords: mutual recurrence; summation; computer algebra

1. Problem Statement

An important task in computer algebra systems is evaluating indefinite sums, that is computing values $s_n = \sum_{k=0}^{n} a_k$ where the a_k is some sequence depending only on k. Today many functions can be summed, in part due to the pioneering work of several researchers [5], [7], [9]. Nonetheless, there are still countless instances where we lack algorithms to sum particular expressions, or the algorithms that exist are inefficient or produce undesirable outputs.

One area of interest is summing recurrence relations. Summing any a_k is a special case of computing the value of A_n where $A_n = A_{n-1} + a_n$ and $A_0 = a_0$. Recurrence relations arise frequently in algorithm analysis and numerical analysis of differential equations. The classical example is the Fibonacci sequence, defined as a function $F : \mathbb{N} \rightarrow \mathbb{N}$ given by $F(n) = F(n-1) + F(n-2) \ \forall n \geq 2$ with $F(0) = 0, F(1) = 1$. It is well known that this sequence satisfies the property $\sum_{i=0}^{n} F_i = F_{n+2} - 1$.

This identity is nice because it presents the sum in terms of the original Fibonacci symbol. An even trickier situation is a system of linear recurrences, often referred

*This work was supported in part by the National Science Foundation under a Research Experiences for Undergraduates (REU) grant, NSF Award No. 1004409.

*The proof is by induction. $F(0) = F(2) - 1$ holds true. Suppose $\sum_{i=0}^{n} F_i = F_{n+2} - 1$ and add F_{n+2} to both sides of the equation to verify the formula.
to as mutual recurrences in the literature. Consider the following example:

\[A, B : \mathbb{N} \to \mathbb{Q} \text{ satisfy } A(n + 2) - A(n + 1) - A(n) - B(n) = 1 \text{ and } -A(n) + B(n + 2) - B(n + 1) - B(n) = 1 \text{ with } A(0) = B(0) = 0 \text{ and } A(1) = B(1) = 1. \]

How could one write an algorithm that computes an identical expression for

\[\sum_{i=0}^n A(i) \]

in terms of the symbols \(A \) and \(B \) themselves? In this paper we present an algorithm which can compute the sums of a mutual recurrence in a closed form any time the inhomogeneous term can be summed repeatedly.

2. Related Work

The primary inspiration for this work is Ravenscroft and Lamagna’s work on summation of a single linear recurrence. They provide an efficient algorithm to express the sum of a homogeneous recurrence \(A(n) = \sum_{i=1}^d m_i A(n - i) \) in terms of \(A(n - d), \ldots, A(n - 1) \) by using a “summing factor” to deal with recurrences that initially appear to be degenerate. They also provide a technique that handles some inhomogeneous terms [10].

Several authors study summing \(C \)-finite sequences (those determined by recurrence relations with constant coefficients). Greene and Wilf provide an algorithm to sum a general form of products of \(C \)-finite sequences [6]. Kauers and Zimmermann study determining whether summation relationships exist between different \(C \)-finite sequences [8].

Work on \(P \)-finite sequences (those determined by recurrence relations with polynomial coefficients) has also been done. Abramov and van Hoeij discuss summing \(P \)-finite sequences in terms of the original coefficients [1]. Chyzak generalizes the works of Gosper [5] and Zeilberger [14] to sum \(P \)-finite sequences that are not hypergeometric [3]. Schneider extends Karr’s approach [7] to \(P \)-finite sequences as well [11].

Recently, [2] demonstrates that our problem regarding systems of mutual recurrences can be solved in the first order case, along with some other special cases. In this paper we demonstrate a reduction from the general problem to the first order case, and then provide a self-contained description of the algorithm.

3. Systems of Mutual Recurrences

Definition 3.1 (Mutual Recurrence). Let \(K \) be a field, and \(m, d \in \mathbb{Z}^+ \). A system of mutual linear recurrence relations with constant coefficients on \(K \) of order \(d \) in \(m \) variables is a set of \(m \) functions \(A_1(n), \ldots, A_m(n) \) mapping \(\mathbb{N} \) into \(K \) satisfying

\[
\begin{pmatrix}
A_1(n) \\
A_2(n) \\
\vdots \\
A_m(n)
\end{pmatrix} = M_1 \begin{pmatrix}
A_1(n-1) \\
A_2(n-1) \\
\vdots \\
A_m(n-1)
\end{pmatrix} + \cdots + M_d \begin{pmatrix}
A_1(n-d) \\
A_2(n-d) \\
\vdots \\
A_m(n-d)
\end{pmatrix} + \begin{pmatrix}
g_1(n) \\
g_2(n) \\
\vdots \\
g_m(n)
\end{pmatrix}
\]
for some $M_1, \ldots, M_d \in M_m(K)$ and g_1, \ldots, g_m mapping $\mathbb{N} \to K$. Typically we will refer to this as a “mutual recurrence”.

We call the vector containing the $g_i(n)$ the inhomogeneous term, and this vector is typically denoted by G. If this inhomogeneous term is zero, the mutual recurrence is homogeneous. We call the values $\{A_i(j) : 1 \leq i \leq m, 0 \leq j < d\}$ the initial conditions for the recurrence. The notation in this definition is used throughout the paper whenever a specific mutual recurrence is being considered.

Example 3.2. We will use the following example of a mutual recurrence to demonstrate computational procedures throughout the paper. For this example $m = 2$, so for convenience we use $A(n)$ to denote $A_1(n)$ and $B(n)$ to denote $A_2(n)$. $A(n) = 2A(n-1) + B(n-1)$, $B(n) = A(n-1) + 2B(n-2)$.

This may be written in the form stated in the definition as

\[
\begin{pmatrix}
A(n) \\
B(n)
\end{pmatrix} =
\begin{pmatrix}
2 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
A(n-1) \\
B(n-1)
\end{pmatrix} +
\begin{pmatrix}
0 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
A(n-2) \\
B(n-2)
\end{pmatrix} +
\begin{pmatrix}
0 \\
0
\end{pmatrix}.
\]

Here the order is $d = 2$ and, coincidentally, $m = 2$ as well.

4. Reduction to $d = 1$ Case

Summing a general mutual recurrence can be reduced to the $d = 1$ case. Let A_1, \ldots, A_m be a mutual recurrence of order d. Define $B_{i,j}(n) = A_i(n + d - j)$ for $1 \leq i \leq m$ and $1 \leq j \leq d$. Then for $j > 1$, $B_{i,j}$ satisfies $B_{i,j}(n) = A_i(n + d - j) = B_{i,j-1}(n-1)$. For each i, $B_{i,1}$ may be written as a sum of $\text{Span}\{B_{i,j'} : 1 \leq i' \leq m, 1 \leq j' \leq d\}$ and an inhomogeneous term. The initial conditions can be taken from the initial conditions for the original system; $B_{i,j}(0) = A_i(d - j)$. The $B_{i,j}(n)$ is a first-order system of mutual recurrences in K, and $\sum_{j=0}^{n} A_i(j) = \sum_{j=0}^{n} B_{i,d}(j)$. The representation of the new system has exactly one coefficient matrix of dimension $m \times d$. A naive implementation can derive each element in this matrix with $O(1)$ operations, so the total time for this reduction is $O(nd)$. This process is identical to the well-known method of transforming linear systems of differential equations with constant coefficients into first-order systems.

Example 4.1. Following Example 3.2, define $W(n) = A(n+1), X(n) = A(n), Y(n) = B(n+1)$ and $Z(n) = B(n)$. This gives the following system of mutual recurrences:

\[
\begin{align*}
W(n) &= 2W(n-1) + Y(n-1) \\
X(n) &= W(n-1) \\
Y(n) &= W(n-1) + 2Z(n-1) \\
Z(n) &= Y(n-1).
\end{align*}
\]
Solving this system provides the solutions to the original; $\sum_{i=0}^{n} A(i)$ and $\sum_{i=0}^{n} B(i)$ are exactly the same as $\sum_{i=0}^{n} X(i)$ and $\sum_{i=0}^{n} Z(i)$.

5. Summing First Order Mutual Recurrences

Consider a mutual recurrence of the form $X(n) = MX(n-1) + G(n)$, where

$$X(n) = (A_1(n) A_2(n) \cdots A_m(n))^t,$$

$G : N \to K$ is an inhomogeneous term and $M \in M_m(K)$. The goal is to compute $\sum_{i=0}^{n} A_i(j)$ for each $i \in \{1, \ldots, m\}$ and express the answer in terms of $\text{Span}\{A_i(n-j) : 1 \leq i \leq m, 0 \leq j \leq 1\}$, the initial conditions, and an inhomogeneous term. For any function $f : \mathbb{N} \to K$ define $S(f(n)) = \sum_{i=1}^{n} f(i)$. S will be known as the summation operator. Recursively define $S_{ij}(n) = S(S_{i-1}^{j-1}(n))$ and $S_{ij}^1(n) = S_i(n) = S(A_i(n))$. This operator corresponds to the notion of summing that allowed Ravenscroft and Lamagna to symbolically sum linear recurrences [10].

It becomes convenient to factor the mutual recurrence into a matrix product as follows. In the following equation, the leftmost matrix is a block matrix, while the others are not. The following equation is identical to the definition provided earlier.

$$(I - M) \begin{pmatrix} A_1(n) \\ A_2(n) \\ \vdots \\ A_m(n) \\ A_1(n-1) \\ A_2(n-1) \\ \vdots \\ A_m(n-1) \end{pmatrix} = G.$$
(0 0 ⋯ 0 | I − M) \begin{pmatrix} S^k_1(n) \\ \vdots \\ S^k_m(n) \\ \vdots \\ S_1(n) \\ \vdots \\ S_m(n) \\ A_1(n) \\ \vdots \\ A_m(n) \\ A_1(n-1) \\ A_2(n-1) \\ \vdots \\ A_m(n-1) \end{pmatrix} = G.

To simplify notation, equations of the above form are written as an augmented matrix,

(0 0 ⋯ 0 | I − M | G).

The S operator now deserves attention. Let V be a vector space over K with basis $\beta = \{ A_i(n-j) : 1 \leq i \leq m, 0 \leq j \leq 1 \} \cup \{ S^i_j(n) : 1 \leq i \leq m, j \in \mathbb{N} \}$. Throughout our work S will only be applied to functions of the form $v(n) + i(n)$ where $v \in V$ and $i(n)$ is an inhomogeneous term that depends only on n, and never on any function of the A_i. Because S is linear, to understand S we need only understand how S acts on β; summing the inhomogeneous parts yields other inhomogeneous parts, and this may be accomplished via other methods [5], [7], [9].

From the definitions, we already know $S(S^i_j(n)) = S^{i+1}_j(n)$. The others are not hard to compute as $S(A_i(n-j)) = A_i(1-j) + A_i(2-j) + \cdots + A_i(n-j) = \sum_{k=1-j}^0 A_i(k) + \sum_{k=1}^n A_i(k) - \sum_{k=n-j+1}^n A_i(k) = S_i(n) - \sum_{k=n-j+1}^n A_i(k) + \sum_{k=1-j}^0 A_i(k)$. Therefore, applying S to a function of the form $v(n) + i(n)$ yields another function of the form $v(n) + i(n)$.

Notice that a row from an augmented matrix corresponds to an equation for the form $v(n) = i(n)$ for some $v \in V$ and inhomogeneous function i. Summing both sides of the equation and moving all inhomogeneous parts to the right-hand side gives $v'(n) = i'(n)$ for some new $v' \in V$ and inhomogeneous i. This can be re-written as a row of the matrix. This is the procedure of applying the summation operator to a row.

Example 5.1. Suppose we have this row of an augmented matrix corresponding to a first order mutual recurrence with $m = 2$,
This row corresponds to the equation

\[3S_1(n) + 5S_2(n) - 2A_1(n) + 6A_2(n) = -n - 4.\]

Applying the summation operator to each side yields

\[3S_1^2(n) + 5S_2^2(n) - 2(S_1(n) - A_1(0)) + 6(S_2(n) - A_2(0)) = -\frac{1}{2}n(n + 1) - 4n,\]

and this is re-written as the augmented matrix row

\[
\begin{pmatrix}
3 & 5 & -2 & 6 & 0 & 0 & 0 & \frac{1}{2}n^2 + \frac{9}{2}n + 2A_1(0) - 6A_2(0)
\end{pmatrix}.
\]

In the following we will explicitly demonstrate the action of the summation operator on an augmented matrix. Suppose we start with

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & B_j & B_{j-1} & \cdots & B_1 & C_1 & C_2 & G
\end{pmatrix}
\]

where \(B_1, \ldots, B_j\) and \(C_1, C_2\) are \(m \times m\) matrices. In the expanded matrix equation, \(B_j\) is multiplied by the block matrix containing the \(S_1(n), \ldots, S_m(n)\) as rows. A row of their product is therefore a linear combination of \(S_1(n)\). Applying the summation operator creates an identical linear combination of \(S_1^{j+1}(n), \ldots, S_m^{j+1}(n)\). The same logic applies to \(B_{j-1}, \ldots, B_1\). In block matrix form, all the \(B_1, \ldots, B_j\) appear to be shifted one block to the left after applying the summation operator. The result looks like

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & B_j & B_{j-1} & \cdots & B_1 & * & * & *
\end{pmatrix}.
\]

To determine the block matrix represented by the leftmost asterisk, consider when \(S_j(n)\) appears in the image of the \(S\) operator; it appears once for every occurrence of \(A_i(n - j)\) (for any \(j \in \mathbb{N}\)) in the preimage. This implies \(C_1 + C_2\) is the value of the leftmost asterisk.

For the \(k\)th asterisk to the right of the separator, the number of \(A_i(n - k)\) in the image of \(S\) is given by the negation of the number of \(A_i(n - l)\) in the preimage, where \(l > k\). This result can be stated as a lemma.

Lemma 5.2. Given an augmented block matrix of the form

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & B_j & B_{j-1} & \cdots & B_1 & C_1 & C_2 & G
\end{pmatrix}
\]
applying S to each row yields a new block matrix

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & B_j & B_{j-1} & \cdots & B_1 & C_1 + C_2 & -C_2 & 0 \\
G'
\end{pmatrix}
\]

where G' is some column matrix of inhomogeneous functions.

Starting with a k-padded representation of a mutual recurrence, we can apply the summation operator to each row up to k times. This is in addition to the standard row operations. Another permissible row operation is to duplicate a row of the left-hand matrix and the corresponding row of the inhomogeneous matrix.

The goal is to start with a k-padded representation of a recurrence, and use row operations to put the augmented matrix into the form

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & I & * & * & | & * \\
\end{pmatrix}
\]

where $*$ denotes any matrix. Then one can back substitute to compute identities $S_j(n) = v(n) + i(n)$ for each $1 \leq j \leq m$, where $v \in V$ and i is inhomogeneous.

6. Summation Algorithm

The following algorithm uses the above operations to solve this summation problem.

Algorithm 6.1.

Input: An order t mutual recurrence with s equations.

Output: Summation identities for each recurrence.

1. Apply the reduction algorithm from Section 4 to derive a first order mutual recurrence with $m = st$ equations. Let M be the coefficient matrix.
2. Compute $\mu(x)$, the minimal polynomial of M.
3. Count the number of factors of $(x - 1)$ in $\mu(x)$ and call it k.
4. Compute the augmented matrix of the $(k + 1)$-padded representation of the matrix.
5. Consider the entire augmented matrix as a single block row and duplicate it k times, so there are a total of $k + 1$ block rows. Number the block rows from top to bottom starting at 1.
6. For $1 \leq i \leq k + 1$, apply S to the $(k + 2 - i)^{th}$ block row i times. Negate this matrix.
7. Compute the row-reduced echelon form of the resulting matrix.
8. For $1 \leq i \leq m$, solve for $S_i(n)$ via back substitution.
9. Back substitute the solutions to the first order mutual recurrence into the original mutual recurrence.
Theorem 6.2. The algorithm is correct.

Proof. After duplicating the block rows of the matrix, the matrix is

\[
\begin{pmatrix}
0 & \cdots & 0 & | & I - M \\
0 & \cdots & 0 & | & I - M \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & | & I - M
\end{pmatrix}.
\]

Using Lemma 5.2, applying the summation operator the appropriate number of times and negating the result leaves a \((k + 4)m \times (k + 1)m\) matrix

\[
\begin{pmatrix}
M - I & -M & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & M - I & -M & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & M - I & -M & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & M - I & M & 0
\end{pmatrix}.
\]

All that is left to show, and the crux of the proof, is that row-reducing the square matrix on the left, \(Z\), leaves a block identity matrix in an appropriate spot for back substitution. Let \(\mu(x)\) be any polynomial such that \(\mu(M) = 0\). By the Cayley-Hamilton theorem, the characteristic polynomial of \(M\) may be taken for \(\mu\).

We regard \(\mu \in K[x]\) and can write \(\mu(x) = \mu_k x^k + \mu_{k-1} x^{k-1} + \cdots + \mu_1 x + \mu_0\) for some \(\mu_i \in K\), but define for any \(X \in M_m(K)\), \(\mu(X) = \mu_k X^k + \cdots + \mu_1 X + \mu_0 I\). \(k\) is the greatest nonnegative integer such that \((x - 1)^k\) divides \(\mu(x)\) and write \(\mu(x) = (x - 1)^k q(x)\) for some \(q(x) \in K[x]\). We define \(q(X)\) for a matrix \(X\) the same way we did for \(\mu\). Notice that this allows us to perform the division algorithm with polynomials over matrices in the sense that, for any polynomial \(g \in K[x]\), there exist polynomials \(s, r \in K[x]\) such that \(q(X) = g(X) s(X) + r(X)\), where the degree of \(r\) is less than the degree of \(g\). This works because sums and products of a single matrix \(X\) freely commute with each other.

Label the block rows of the matrix from top to bottom starting at 1. For \(1 \leq i \leq k\), multiply the row by \((M - I)^{k-i} M^{i-1} q(M)\). In the first block row, the leftmost block entry becomes \(\mu(M) = (M - I)^k q(M) = 0\). For all subsequent rows \(i \leq k\), the leftmost non-zero block entry equals the entry above it; namely the leftmost non-zero block in row \(i\) is \((M - I)^{k-i+1} M^{k-1} q(M)\). In row \(k\), the rightmost block entry is \(-M^k q(M)\) and the entry below it is still \(M - I\). At this point, row reducing the matrix only leaves all the entries of the matrix nonzero except for these two, so
Using the division algorithm, write \(q(M) = (M-I)s(M) + \alpha M^p \) for some \(\alpha \in K \), \(p \in \mathbb{N} \) and \(s \in K[x] \). Notice that \(\alpha \neq 0 \), for if it were not then \((x-1)|q(x) \) which would contradict its definition. Multiply the bottom row by \(s(M)M^k \) and subtract from the row above. Divide the above row by \(\alpha \). This leaves the matrix

\[
Z \sim \begin{pmatrix}
0 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & M^k q(M) \\
0 & \cdots & 0 & M-I
\end{pmatrix}.
\]

Finally multiply the bottom row of the matrix by \((M^{p+k-1} + \cdots + M^1) \) and subtract from the top row. This leaves the entry \(M^{p+k} - (M^{p+k-1} + \cdots + M^1)(M-I) = M \) in that row. Negate the bottom row and add the other row to derive \(I \) in the bottom right corner of the matrix.

Theorem 6.3. The algorithm runtime is polynomial in \(m \) and \(d \), not counting the time taken for summing the inhomogeneous terms. \(m \) denotes the number of recurrence relations, and \(d \) denotes the maximal order of the mutual recurrence.

Proof. Let \(\omega \) be the exponent for matrix multiplication, that is the smallest known value so that two \(n \times n \) matrices can be multiplied in \(O(n^\omega) \) time. Necessarily \(\omega \geq 2 \). As of this writing, the best published known value for \(\omega \) is 2.3755 [4]. Recent work establishes \(\omega < 2.3727 \) [13].

The reduction from the general case to the first-order case requires \(O(md) \) time. The minimal polynomial of the matrix may be computed in \(O((md)^\omega) \) time using an algorithm by Storjohann [12]. Counting the factors of \((x-1) \) can be done by dividing the minimal polynomial by \((x-1) \) at most \(md \) times, for a total of at most \(O(m^2d^2) \) operations. Since the minimal polynomial divides the characteristic polynomial, the number of factors, \(k \), is at most \(md \).

Constructing the \((k+1)\)-padded representation of the recurrence, duplicating rows, and summing requires \(O(mk) \subset O(m^2d) \) time; there are \(O(mk) \) entries in the matrix and each entry can be determined in constant time, less the time taken to sum inhomogeneous terms. Row-reducing the matrix requires \(O((mk)^\omega) \) time. The back substitution can be performed in \(O(mk) \) time.
The row-reduction dominates the asymptotic time of all the other steps, so the algorithm runs asymptotically as fast as multiplying two \(mk \times mk \) matrices. This is bounded by \(O((m^2d)^\omega) \).

7. Conclusion

In this paper, we considered the problem of summing a system of mutual recurrence relations with constant coefficients. For sets in which the maximal order of any individual recurrence is \(d \), we developed an algorithm to express the sum \(\sum_{i=0}^{n} A(i) \) of any individual recurrence as a linear combination of \(A(n), \ldots, A(n-d) \), the initial conditions, and the sum of the inhomogeneous term of the recurrence.

A set of \(s \) mutual recurrences of maximal degree \(d \geq 1 \) can be transformed to a first order linear system of \(m = sd \) equations using the techniques presented in Section 4. The procedure described in Sections 5 and 6 works with this first order representation. The minimal polynomial \(\mu(x) \) of the coefficient matrix \(M \) is computed, and the number of factors \(k \) of \(x - 1 \) in \(\mu(x) \) is determined. With this information, the algorithm takes a \((k + 1) \)-padded representation of the system and uses row operations to place the augmented matrix into row-reduced echelon form. Working one row at a time, back substitution is used \(m \) times to solve the equations in the first order system. Finally, the solutions to the first order system are substituted back into the original mutual recurrence to produce desired sums.

The algorithm is efficient, running in time \(O((m^2d)^\omega) \), where \(\omega \) is the exponent for matrix multiplication, and is dominated by the row reduction steps.

References