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Abstract
The aggressive optimization of heavily used kernels is an im-
portant problem in high-performance computing. However,
both general purpose compilers and highly specialized tools
such as superoptimizers often do not have sufficient static
knowledge of restrictions on program inputs that could be
exploited to produce the very best code. For many appli-
cations, the best possible code is conditionally correct: the
optimized kernel is equal to the code that it replaces only
under certain preconditions on the kernel’s inputs. The main
technical challenge in producing conditionally correct opti-
mizations is in obtaining non-trivial and useful conditions
and proving conditional equivalence formally in the pres-
ence of loops. We combine abstract interpretation, decision
procedures, and testing to yield a verification strategy that
can address both of these problems. This approach yields
a superoptimizer for x86 that in our experiments produces
binaries that are often multiple times faster than those pro-
duced by production compilers.

1. Introduction
The aggressive optimization of heavily used kernels is an
important problem in high-performance computing applica-
tions. However, both general purpose compilers and special
purpose tools such as superoptimizers 1 [3, 22, 35] often fail
to produce the best possible code. In many cases, this is be-
cause they are unaware of restrictions on a kernel’s possible
runtime inputs. As a result, these tools must forgo aggressive
optimizations that are correct for inputs that are guaranteed
to arise at runtime but may be incorrect for inputs that in fact
cannot occur in the specific context in which the kernel is
used.

Transformations of this form fall into the category of con-
ditionally correct optimizations: the resulting code is equal
to the code that it replaces only under certain preconditions

1 The discussion in this section is restricted to superoptimizers that formally
guarantee correctness. Also see Section 6.

on kernel inputs. Due to the significant benefits associated
with these transformations, modern compilers provide some
facilities for programmers to assert preconditions for impor-
tant conditionally correct optimizations. For example, gcc
provides support for a small set of annotations that can be
used to communicate contextual hints to its optimization
routines. The restrict keyword of the C99 standard, for
instance, declares that a function will only be executed in
contexts where addresses derived from distinct input point-
ers cannot overlap. Using this annotation, gcc is sometimes
able to perform a conditionally correct optimization that re-
sults in code which is correct only in contexts that respect
that annotation.

The value of conditionally correct optimizations is shown
in Figure 1 (further details of this evaluation are presented
in Section 5), which shows the performance improvement
of code compiled with gcc -O3 using annotations (annot
gcc -O3) over a baseline of gcc -O3. For these bench-
marks, the use of compiler annotations results in as much
as a 3× speedup over code that is already aggressively op-
timized (O3 is the highest level of optimization that gcc
provides). However, for many benchmarks the use of anno-
tations does not produce any improvement at all, and in some
cases can even result in slowdowns (ex3c). Regardless, this
situation is still an improvement over current superoptimiz-
ers [3, 22, 35] that provide no facilities for consuming anno-
tations and reject optimizations that are not provably correct
for all possible inputs.

There are several reasons why a compiler might be un-
able to take complete advantage of hints that describe con-
straints on execution context. First, compilers are designed
to provide fast compilation times, and the static analyses that
meet this criteria are often too imprecise to prove the cor-
rectness of the desired optimization even in the presence of
a restricted context. As a result, the hint is often ignored and
a potential performance improvement is lost. Second, the
language of annotations currently supported by production
compilers is quite restrictive. Many of the hints that a pro-
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Figure 1. The value of conditionally correct optimization,
gcc with full optimizations enabled (-O3) shown for refer-
ence. Vertical bars show speedups for code obtained by pro-
viding gcc with conditionally correct annotations (annot
gcc -O3), the conditionally correct code generated by
cSTOKE, and cSTOKE code which is instrumented to check
correctness conditions at runtime (CHECK).

grammer would like to provide, such as ranges of program
inputs, are not currently supported. This situation is slowly
improving, but is still quite far from a state in which hints
can be provided in full generality. And finally, for many low-
level optimizations, it is not clear what hints, and in what
combination, are necessary to produce faster code. The hints
that a programmer considers useful might not have any, or
as suggested, even an adverse effect on a compiler’s abil-
ity to generate performant code. And in many cases, missed
annotations may lead directly to missed optimizations.

In this paper, we present an approach to conditionally cor-
rect optimizations that overcomes these issues by inverting
the annotation-based process described above. Rather than
ask the user to provide annotations in the hope that they
will assist the compiler in producing optimized code, we
ask the compiler to produce optimized code along with the
preconditions required to demonstrate the code’s conditional
correctness. To maintain generality, we use a set of user-
provided test cases (i.e., concrete inputs) to describe pos-
sible runtime contexts. In exchange, the compiler produces
both an optimized kernel and the precondition under which
it is formally guaranteed to be correct. All of the test cases
are guaranteed to satisfy the precondition, and if the user
believes that the inferred precondition is too strong, he can
supply additional test cases that cover the missing behaviors
and the process can be repeated.

Because the code produced by the optimizer is only con-
ditionally correct, it is not guaranteed to hold in an arbi-
trary execution context. Furthermore, because the verifica-
tion technology for proving that a precondition is always
satisfied in the context of real world programs does not cur-
rently exist, we take a different approach. The class of pre-
conditions we consider are easily (and mechanically) con-
vertible to executable code. As a result, it is straightforward

to check those preconditions at runtime and then to either
execute the optimized code if they hold or the original code
if they do not. In some cases the cost of checking a precondi-
tion may outweigh the benefit of using the optimized code.
If so, the user can either dispense with the runtime checks
if he can verify that they will always be satisfied by other
means, or dispense with the optimization altogether.

We demonstrate the feasibility of this approach in a tool
based on STOKE [35, 36, 39], a binary superoptimizer for
x86 which produces code that is correct for all possible input
contexts. Our modified version of STOKE, called cSTOKE
(STOKE with conditions), is capable of producing condition-
ally correct binaries and contains a bit-precise verifier called
COVE (COnditional VErifier) that makes use of a combi-
nation of abstract interpretation, decision procedures, and
testing to infer the conditions required to verify the con-
ditional correctness of optimized code. The resulting opti-
mizer addresses the three concerns described above: it uses
state-of-the-art techniques to verify conditionally correct op-
timizations that production compilers cannot, it is capable of
mining arbitrary information about preconditions from test
cases, and it can infer the preconditions required to justify
aggressive optimizations automatically.

Using this superoptimizer (cSTOKE, Figure 1) we are
able to match, and in many cases improve, the performance
of gcc by inferring and exploiting contextual information.
Although STOKE has previously been shown to produce cor-
rect binaries that are up to 70% faster than those gener-
ated by production compilers [35, 39], by leveraging con-
ditional correctness cSTOKE can generate binaries that are
several times faster regardless of whether or not annota-
tions are used. Figure 1 (CHECK) shows the performance
of cSTOKE code with instrumentation that checks the in-
ferred preconditions at runtime (Section 5.5). Although the
resulting binaries are correct for all inputs, the instrumen-
tation can cause significant performance degradation to the
extent that the benefits of conditionally correct optimizations
are lost (kmeans and raysphere). Nonetheless, for most
benchmarks, the code obtained by instrumenting condition-
ally correct cSTOKE code is significantly better than either
the correct or conditionally correct code generated by gcc.

We wish to stress that our contribution lies in improved
verification technology rather than in the improved ability
to discover optimizations. The original implementation of
STOKE without support for conditional correctness [35, 39]
can find all of the optimizations that we report in this pa-
per. However, the original STOKE verifier can only prove the
correctness of optimizations when the improved program is
equivalent to the original for all possible inputs. As a result,
it cannot verify any of the conditionally correct optimiza-
tions that we report and must instead discard them. Remedy-
ing this shortcoming is precisely what distinguishes STOKE
from cSTOKE.
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Although the benchmarks we consider are small (less
than one hundred lines of 64-bit x86 assembly), they are
representative of the complexity limits of STOKE, and ex-
tend well beyond the capabilities of other superoptimizers.
For example, [3] (the only other superoptimizer for x86) is
limited to loop-free x86 programs of six lines or less. And al-
though the running time of our optimizer is longer than that
of a traditional compiler, the benchmarks that we consider
are representative of high-performance compute kernels for
which the additional optimization time is justified. In gen-
eral, we find that the optimization cost (seconds to minutes)
is acceptable given the high quality of the resulting binaries.

To summarize, this paper makes the following contribu-
tions. In Section 2, through an example, we describe our
approach to compiler optimization: an optimizer generates
performant code that is correct only in restricted contexts
and presents a formal description of those preconditions.
In Section 3, we present an algorithm for verifying condi-
tionally correct optimizations. The main technical contribu-
tion of this algorithm is in showing that tests can be used
both to obtain useful conditions under which it is possible
to prove conditional equivalence and to infer invariants over
arbitrary abstract domains that relate the original and opti-
mized programs. In Section 4, we describe the implementa-
tion of the first binary optimizer for x86 that produces con-
ditionally correct binaries that are formally correct under the
conditions also included in the output. In Section 5 we show
that, in our experiments, conditionally correct code is often
multiple times faster than the code generated by production
compilers and maintains desired application behavior, and
discuss instrumentation for checking the inferred conditions
dynamically at runtime. We conclude in Section 6 with a
discussion of related work.

2. Overview and Motivating Example
We begin with an informal overview of our approach to con-
ditionally correct optimization with an example of a ray trac-
ing program [36]. As is typical of ray tracers, the overall
execution time of the program is dominated by vector arith-
metic. In particular, consider the code shown in Figure 2,
which executes in the inner loop of the application and in-
duces depth-of-field blur by repeatedly perturbing the view-
ing camera angle. By improving the performance of this ker-
nel, it is possible to improve overall program performance.

We first provide STOKE with the binary of a program
and the name of a function to optimize. In this case, we
use the code produced by compiling the ray tracer from the
C source using gcc -O3 and instruct STOKE to optimize
the resulting camera perturbation code shown in Figure 2
(left).2 STOKE runs the program on a small set of user-
provided test cases and snapshots the machine states that

2 The instructions in this code are in the AT&T syntax, i.e., they follow an
opcode-source-destination pattern. E.g., the instruction movl ebx, eax
moves the contents of register ebx to eax. Arithmetic instructions consider

V delta(V& v1, V& v2, float r1, float r2) {
// v1 = [(rdi), 4(rdi), 8(rdi) ]
// v2 = [(rsi), 4(rsi), 8(rsi) ]
// ret = [xmm0[63:32], xmm0[31:0], xmm1[31:0]]

assert(0.0 <= r1 <= 1.0 && 0.0 <= r2 <= 1.0);

// gcc -O3:
return V(99*(v1.x*(r1-0.5))+99*(v2.x*(r2-0.5)),

99*(v1.y*(r1-0.5))+99*(v2.y*(r2-0.5)),
99*(v1.z*(r1-.05))+99*(v2.z*(r2-0.5)));

// STOKE:
return V(99*(v1.x*(r1-0.5)),

99*(v1.y*(r1-0.5)),
99*(v2.z*(r2-0.5)));

}

1 # gcc −O3 1 # STOKE
2 2
3 movl 0 . 5 , eax 3 movl 0 . 5 eax
4 movd eax , xmm2 4 movd eax , xmm2
5 subss xmm2, xmm0 5 subps xmm2, xmm0
6 movss 8( r d i ) , xmm3 6 movl 9 9 . 0 , eax
7 subss xmm2, xmm1 7 subps xmm2, xmm1
8 movss 4( r d i ) , xmm5 8 movd eax , xmm4
9 movss 8( r s i ) , xmm2 9 mulss 8( r s i ) , xmm1

10 movss 4( r s i ) , xmm6 10 movss 4( r d i ) , xmm5
11 mulss xmm0, xmm3 11 mulss xmm0, xmm5
12 movl 9 9 . 0 , eax 12 mulss ( r d i ) , xmm0
13 movd eax , xmm4 13 mulss xmm4, xmm0
14 mulss xmm1, xmm2 14 mulps xmm4, xmm5
15 mulss xmm0, xmm5 15 punpckldq xmm5, xmm0
16 mulss xmm1, xmm6 16 mulss xmm4, xmm1
17 mulss ( r d i ) , xmm0
18 mulss ( r s i ) , xmm1
19 mulss xmm4, xmm5
20 mulss xmm4, xmm6
21 mulss xmm4, xmm3
22 mulss xmm4, xmm2
23 mulss xmm4, xmm0
24 mulss xmm4, xmm1
25 addss xmm6, xmm5
26 addss xmm1, xmm0
27 movss xmm5, −20( r s p )
28 movaps xmm3, xmm1
29 addss xmm2, xmm1
30 movss xmm0, −24( r s p )
31 movq −24( r s p ) , xmm0

Figure 2. A conditionally correct optimization for a routine
that generates random camera perturbations (top). STOKE
produces code that is faster than gcc -O3 (bottom left) by
eliminating and reordering computations. The resulting code
(bottom right) is proved conditionally correct using COVE.

immediately precede the execution of the perturbation code.
These machine states are used as test cases to check whether
putative optimizations preserve the function’s behavior on at
least some inputs. The code generated by gcc reads from six
heap locations and writes to two stack locations. However,
the contents of some heap locations depend only on the
position of the camera and remain constant irrespective of

the destination as the first operand. E.g., the instruction subl 1, eax
decrements the integer represented by the bits in eax by 1.
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the scene being rendered. As a result, STOKE is able to
generate the shorter code shown in Figure 2 (right) with the
guarantee that it agrees with the gcc code on every provided
test case. The resulting code both omits reads from locations
that hold constant values and avoids the use of the stack by
exploiting vector instructions.

Having produced a potential optimization, STOKE at-
tempts to use its formal verifier to prove the equivalence
of the two programs shown in Figure 2 for all possible in-
puts; as expected, the verification fails. In the standard for-
mulation of compiler optimization, STOKE has proposed an
incorrect transformation: although the faster program is cor-
rect for every user-provided test case, it would be incorrect
were it run with different values in the heap. However, the
optimization performed by STOKE is in fact conditionally
correct under conditions that hold for the ray tracer. As a
result, we apply a subsequent check for conditional equiva-
lence that, if successful, presents the user with both the opti-
mization and the conditions under which it holds.

The approach so far described is similar to speculative op-
timizers (including profile guided optimizers and JIT com-
pilers) that apply conditionally correct optimizations and
must produce the conditions under which they are correct (in
order to enforce them at runtime). However, there is a major
difference between these techniques and our approach. For
speculative optimizers, the optimizer and the verifier are in-
tertwined; the optimizer has a list of transformations and the
conditions under which it is safe to apply them. As a result,
obtaining the conditions under which the optimized code is
correct is direct and results from conjoining the conditions
for every applied transformation.

In contrast, the non-traditional optimizations produced
by superoptimizers that enumerate arbitrary programs make
condition inference substantially more difficult. STOKE
makes random changes to the input program until it finds
a code that both agrees with that program on all test cases
and produces better performance (Section 4.1). The ran-
dom changes are neither required to preserve correctness
nor improve performance. In a typical run STOKE makes
millions to billions of random changes and often finds opti-
mizations outside the vocabulary of a traditional optimizer.
This characteristic of producing surprising code sequences
is what makes superoptimization so powerful. In contrast
to a speculative optimizer that has perfect knowledge about
the optimizations that have been applied and the conditions
under which they are correct, with STOKE we have no such
knowledge. The output of STOKE is an arbitrary sequence of
x86 instructions that agrees with the input program on all the
tests. Beyond that, we have no useful information regarding
what program changes have been applied to transform the
input program to the output program.

Before discussing our implementation of conditional
equivalence for such code sequences, we note that the two
programs shown in Figure 2 are conditionally equivalent

under several possible conditions, many of which are use-
less. First, for example, any two programs are equivalent
under the condition false. Second, the two programs are
equivalent under the condition that encodes the union of the
available test cases; all outputs of STOKE satisfy this con-
dition. Thirdly, the weakest precondition is a direct logical
encoding of the two x86 programs and provides the trivial
guarantee that the programs are equivalent on all inputs for
which the programs produce the same output.

To be useful, a set of conditions must provide non-trivial
guarantees. COVE first automatically computes a sound
over-approximation of the user-provided test cases to infer
non-trivial human-comprehensible preconditions and then
proves conditional equivalence under those conditions. For
the camera perturbation code, COVE produces conditions
that state that the values at memory locations 8(rdi),
(rsi), and 4(rsi) are zero, and that the memory in-
structions on lines 6, 8, 9, 10, 16, 17, and 18 must read from
distinct memory locations.

COVE then attempts to prove the equivalence of the op-
timized program under these conditions. For both the origi-
nal and optimized programs, COVE translates the x86 code
to SMT formulae that soundly model execution with bit-
precise accuracy. Crucially, because COVE is designed to
prove conditional equivalence, these formulas can be much
more compact than formulas that soundly model execution
for the purpose of proving equivalence under all possible
contexts. For example, to prove unconditional equivalence
we must generate constraints for both an aliasing and non-
aliasing case for every pair of memory dereferences. These
cases grow exponentially in the number of memory deref-
erences. In contrast, to prove conditional equivalence, the
constraints need only model the aliasing relationships that
are inferred from the user-provided tests. Because these in-
ferred aliasing relationships are included in the computed
precondition (Section 3.6), these constraints model all pos-
sible executions under that precondition. The consequences
are dramatic. For the example in Figure 2, the reduction in
the number of cases is approximately nine orders of mag-
nitude! As a result, the constraints are within the reach of
state of the art SMT solvers. COVE creates a formula whose
satisfying assignments are initial program states that satisfy
the preconditions and cause the two programs to produce
different results. If the SMT solver returns “unsat”, COVE
has proven conditional equivalence. Although the resulting
SMT queries are hard—they contain quantifiers, intermix
bit-vectors ranging from 8 bits to 128 bits, and the con-
straints that model the x86 instructions are quite complex—
the verification time for all of the benchmarks we consider
is well under one second.

Having produced both an optimization and the precondi-
tion under which it is correct, the user must decide (based on
the inferred preconditions) whether more tests are needed to
cover missing relevant behavior. In addition, the user has the
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option of either instrumenting the code with runtime checks
for those preconditions (and in doing so guaranteeing cor-
rectness) or running the code as is. For the code shown in
Figure 2 (right) this results in over 3× speedup (slightly un-
der 3× if dynamic checks are included) compared to the
code generated by gcc -O3. When combined with opti-
mizations to three additional kernels (Section 5), the end-to-
end speedup over the original ray tracer application is over
2× for rendering a full scene.

3. Verification
We present a formal definition of conditionally correct op-
timizations, a generator of useful conditions, and a verifica-
tion strategy for proving conditional equivalence. We start
by defining conditional equivalence in the context of com-
piler optimizations.

3.1 Conditional Equivalence
We make a distinction between T , the target or reference
code, and R, the rewrite or proposed optimized replacement
for the target T . A program state consists of a valuation
of registers and memory. The 64-bit x86 architecture has
sixteen 64-bit general purpose registers, sixteen 128-bit SSE
registers, and memory, which we model as an array. When
we refer to the state at a program point, that state is limited
to live registers and memory locations.

Two programs are conditionally equivalent if they are
equivalent for all input states that satisfy a given condition.

Definition 1. Target T is conditionally equivalent to rewrite
R under the condition C if for all states s satisfying C(s)
both of the following hold: (i) if executing T from initial
state s terminates in state s′ without aborting, then executing
R from initial state s also terminates in state s′ without
aborting; and (ii) if T diverges when execution is started
from s, then so does R.

This definition captures the requirement that T terminates
on an input s if and only if R terminates on s. Hence, this
definition is richer than partial equivalence. The asymmetric
notion of equality with respect to aborting in Definition 1
seems necessary to validate several useful compiler opti-
mizations. If the target T aborts (generates a hardware fault)
on some input, optimizing compilers are free to use an R
with any behavior, defined or undefined, on that input.

An optimization is conditionally correct if it produces
conditionally equivalent rewrites. An optimization is (un-
conditionally) correct if it produces rewrites that are con-
ditionally equivalent with condition true. Our framework
COVE takes two programs (T ,R) and a set S of tests, proves
their conditional equivalence, and produces the condition C
as output.

3.2 Verification Conditions
In this section we start with a simple example for the task of
conditional equivalence checking, but one that is sufficient to

1 void T() { 1 void R() {
2 x = 0; 2 while(x!=10){
3 while (x < 10){ 3 x=x+1;
4 x = x+1; 4}
5 }

Φ(x) ∧ x = x1 = x2 ∧ x′1 = 0 ∧ x′2 = x2 ⇒ I(x′1, x
′
2) (Init)

I(x1, x2) ∧ x1 < 10 ∧ x′1 = x1 + 1 ∧
x2 6= 10 ∧ x′2 = x2 + 1⇒ I(x′1, x

′
2) (Ind)

I(x1, x2, ) ∧ x1 ≥ 10 ∧ x2 = 10⇒ x1 = x2 (Partial)
I(x1, x2)⇒ (x1 < 10⇔x2 6= 10) (Total)

Figure 3. Two conditionally equivalent loops and the corre-
sponding VCs. The variables x1 and x2 represent the states
of T and R, respectively. COVE infers the condition Φ and
the invariant I that make these VCs valid.

illustrate the important concepts. Consider the two programs
T and R of Figure 3 which manipulate a global variable
x. A sufficient condition for T and R to be conditionally
equivalent is the existence of an invariant I and a condition Φ
that make the four verification conditions (VCs) of Figure 3
valid. Note that all the variables in all the VCs are implicitly
universally quantified.

The condition Φ constrains the input contexts in which
T and R start their execution. The first VC Init states that
when we start execution of T and R from equivalent states
that satisfy Φ and the execution reaches the loop heads then
the states of T and R are related by the invariant I . We call
this VC Init as it constrains the invariant to hold initially
before the loops execute. The second VC Ind states that if
we start the execution of the loop bodies of T andR in states
that satisfy I and execute one iteration of the loops then the
resulting states of T and R are again related by I . We call
this VC Ind as it constrains the invariant to be inductive. Any
predicate that satisfies Init and Ind is an inductive invariant:
it both holds initially and is inductive. However, not all
inductive invariants are strong enough to prove equivalence.
For example, true is a trivial inductive invariant. The third
VC Partial says that I is strong enough to prove partial
equivalence (i.e., equivalence modulo termination). It states
that if T exits the loop and R exits the loop then the final
states of T andR are equivalent. The last VC Total is needed
to prove (total) equivalence as given by Definition 1. It
says that T exits the loop if and only if R exits the loop.
For the interested reader, we explain the VCs in detail in
Appendix A.

Given this formulation, we have reduced the problem of
checking conditional equivalence between T and R to find-
ing an unknown invariant I and a condition Φ that make
the given VCs valid. We follow the approach described in
DDEC [39] to generate the VCs with one major difference
that we discuss in Section 3.6. DDEC assumes System V
AMD64 ABI as the calling convention [28] and includes a
dataflow analysis for liveness. We refer the reader to [39]
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COVE(V : VCs, S: Concrete States, A: Abstract domains)
Returns: A condition Φ that makes V valid

1: Φ := true; I := true
2: for each (A,α,t) ∈ A do
3: if Valid(V,Φ, I) then
4: RETURN Φ
5: end if
6: Φ:= Φ ∧ α(S.PreTests)
7: J := α(S.InvTests); ∆ := ∅
8: repeat
9: J := J t α(∆)

10: ∆ := Check(V.Init , V.Ind ,Φ, I ∧ J)
11: until ∆ = ∅
12: I := I ∧ J
13: end for
14: if Valid(V,Φ, I) then
15: RETURN Φ
16: else
17: RETURN false
18: end if

Figure 4. The COVE algorithm for proving the conditional
equivalence of two loops. COVE combines testing (lines 6
and 7), decision procedures (lines 3, 10 and 14), and abstract
interpretation (lines 8 to 11).

for a detailed description of VC generation for x86. The
VC generation is straightforward if the loops run for equal
numbers of iterations and the resulting VCs are analogous
to those shown in Figure 3: there is one VC for the first
execution of the two loop heads, one for establishing in-
ductiveness, one for partial equivalence, and one for total
equivalence. More complicated control flow, for example
nested loops, require additional VCs and invariants. There
are standard techniques to generate VCs for unstructured
programs [4, 12] and the x86 specific details can be found
in [39]. Every additional loop requires an additional invari-
ant and the number of VCs grows linearly with the number
of loops (nested or otherwise). For all of our benchmarks,
the loops have identical control flow and run for the same
number of iterations. If the loops run for different numbers
of iterations then [39] uses tests to infer how the numbers of
loop iterations are related and performs loop unwinding and
loop unrolling to produce two loops that run for equal num-
bers of iterations on the tests and then generates the VCs.
This approach fails to generate VCs to prove the equivalence
of very different programs, say the equivalence of two con-
ceptually distinct algorithms, but we find it to be effective
for proving equivalences relevant to optimizations.

3.3 COVE
The core COVE algorithm takes a set of VCs, V , a set of con-
crete states, S, and a set of abstract domains, A. The VCs
contain an unknown precondition Φ and an unknown invari-
ant I . COVE finds a valuation of these unknown predicates
that makes the VCs valid. The algorithm can be generalized

to VCs with multiple unknown invariants and hence to more
complicated programs [38, 39]. The pseudocode is depicted
in Figure 4; we explain the details next.

The input S contains the concrete states that are inputs
to T (S .PreTests) and the concrete states observed on each
iteration of the loops (S .InvTests). We choose S .PreTests
to be a set of input states on which T and R are equivalent.
For each s ∈ S .PreTests we then run T and R on s and
record the set of states encountered at the loop heads. We
place all states encountered at the loop head in S .InvTests .

Each abstract domain A ∈ A is ordered by v, has an
abstraction function α, a join function t, and if needed a
widening operator∇. The conditions and invariants inferred
by COVE are restricted to abstract states in A. We assume
that each abstract value can be converted to a predicate that
can be consumed by a decision procedure.

The algorithm starts by initializing Φ and I to true.
Next, we iterate over each abstract domain to strengthen
these conditions. If the current invariant and the condi-
tion make the VCs valid then we return the condition and
exit (lines 3-5 and 14-15). Otherwise, we update the condi-
tion Φ by conjoining it with α(S .PreTests) and initialize
the candidate invariant J over the current abstract domain
to α(S .InvTests) (lines 6 and 7). We then iteratively use
the Check decision procedure to find any counterexamples
which show that J is not an inductive invariant. If any coun-
terexamples ∆ are found then we join J with α(∆) and
repeat (as [33, 38, 39, 44]). Otherwise, if the check succeeds
(no counterexamples are returned) then J is an inductive in-
variant and the current invariant I is strengthened. For some
abstract domains, such as intervals, the joins need to be re-
placed with widening to guarantee termination. After updat-
ing I , we repeat this process with the next abstract domain in
A. If none of the abstract domains suffice then COVE fails.

3.3.1 Example
We show how COVE proves the conditional equivalence of
the programs in Figure 3. Choose S .PreTests to be {x = 0}
since on this input set, T and R are equivalent. Then we find
S.InvTests ≡ {(x1 = 0, x2 = 0), . . . , (x1 = 10, x2 =
10)} (where x1 denotes the state of T and x2 denotes the
state of R). Suppose we first consider the domain of affine
equalities [23]. Using S as described, line 6 sets Φ to x = 0
and line 7 sets J to x1 = x2. A decision procedure is able to
check that this instantiation makes the predicates ¬Init and
¬Ind unsatisfiable in line 10. Hence, line 12 updates the cur-
rent invariant I to x1 = x2. However, I is not strong enough
to make all the VCs valid on line 3. We repeat this exer-
cise with intervals [8]. We have α(S .PreTests) ≡ x = 0
and α(S .InvTests) ≡ (0 ≤ x1 ≤ 10) ∧ (0 ≤ x2 ≤ 10).
Again the check on line 10 succeeds (no counterexamples
are found) and I is strengthened to (x1 = x2) ∧ (0 ≤ x1 ≤
10). This time the check on line 3 succeeds and x = 0 is re-
turned as the condition under which T and R are equivalent.
Note that any one of equalities or intervals is sufficient to ex-
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press the inferred condition. However, they individually are
insufficient to prove conditional equivalence and the proof
requires invariants over both abstract domains. In our evalu-
ation, we find that it is often the case that an abstract domain
is absent in conditions but it is still necessary to express the
requisite invariants (Section 5.3).

3.4 Properties of COVE

The standard techniques to infer preconditions in program
verification attempt to perform a weakest precondition com-
putation. However, there is no general algorithm to compute
weakest preconditions in the presence of loops. For loop-
free programs, the weakest precondition computation is in-
tractable in the presence of bit-vector operations and alias-
ing [2, 6]. It is also not clear how to approximate the weakest
precondition while not ruling out the given valid executions.
The condition Φ ≡ false satisfies the VCs but yields a triv-
ial guarantee: two programs are equivalent if they are never
executed. Our choice for Φ captures information in the test
cases under which T is executed.

The condition discovered in Figure 4 is the strongest
abstraction of the test cases in the given abstract domain. The
following lemma shows that, for a given iteration of the outer
loop, we can ensure that the inductive invariant J found by
the inner loop is the most precise inductive invariant that can
be expressed in our abstract domain. We omit the proof as it
uses standard techniques [33, 38].

Lemma 3.1. For all inductive invariants I ∈ A, the candi-
date invariant J ∈ A satisfies J v I.

If the checks on lines 3 or 14 of Figure 4 fails then either
the VCs model the concrete semantics too imprecisely or
the abstract domain is insufficient and COVE must be re-
executed with another abstract domain. Lemma 3.1, which
intuitively says that COVE does not suffer from excess over-
approximation, shows that there can be no other source of
failure.

Even with this per-iteration guarantee, it is useful to have
a weakening phase before returning the precondition, as
the obtained condition might be unnecessarily strong. In
the weakening phase, we find the minimal condition under
which we are able to prove equivalence. Since our condi-
tions are small, we currently perform a linear scan over the
conjuncts in the inferred condition to find a minimal condi-
tion. For example, for the condition x ≥ 0 ∧ x ≤ 0, we can
try dropping the conjuncts one by one. For Figure 3 none of
these can be omitted.

In the absence of tests, our iterative procedure can still
be used by initializing the candidate invariant with false (in-
stead of α(S)). However, in this case the convergence to an
inductive invariant may be slow. In particular, for intervals,
the iterative process with no tests requires ten iterations to
find an inductive invariant for Figure 3. By design, COVE
has access to tests, which accelerates convergence of the it-
erative process. As remarked in Section 2, we focus on com-

pute intensive kernels. Almost by definition, these kernels
are executed very frequently and hence many test cases are
available (up to millions, in our experience).

3.4.1 Instantiating COVE for x86
For x86 binaries, we use the following abstract domains: the
alignment domain described in Section 3.5, the domain of
bit-vector equalities [10], and the domain of bit-vector inter-
vals [32]. Additional abstract domains can easily be included
(e.g., relational abstract domains such as polyhedra) but so
far we have not found them to be useful in our setting.

The domain of bit-vector intervals is very similar to in-
teger intervals [8]. We define a linear ordering ≤b between
bit-strings with identical bit-widths as follows: b1 ≤b b2 if
the unsigned integer represented by bits of b1 is smaller
than the unsigned integer represented by the bits of b2.
The abstractions are intervals, [bl, bu], and the concretiza-
tion γ([bl, bu]) = {b : bl ≤b b ≤ bu}. The abstrac-
tion function over a single concrete state b is given by
α(b) = [b, b]. Next, the join operator is defined as fol-
lows: [c, d] t [e, f ] = [min(c, e),max (d, f)], where the
min and max operations are in accordance with the ordering
≤b. Since this abstract domain has an exponential height,
we define a widening operator to accelerate convergence:
[c, d]∇[e, f ] = [g, h], where [g, h] is the smallest interval
that contains [c, d] t [e, f ] with the restrictions that the bit-
strings g and h both have at most one bit as 1 and the rest of
the bits 0.

In contrast to intervals, the domain of bit-vector equalities
is more sophisticated and requires operations over matrices
whose entries are bit-vectors. We arrange the concrete states
in a matrixM where each row represents a concrete state and
each column represents a particular state element (such as a
register). The abstraction α(M) is the Howell normal form
ofM [20]. This normal form is an extension of reduced row-
echelon form [19] albeit suitable for matrices with bit-vector
entries and its computation incurs the same overall cubic-
time complexity. The join, M t N is the Howell normal
form of the matrix obtained by concatenating M and N
vertically. We did not require a widening operator for this
domain because convergence is fast in practice. We refer the
reader to [10] for a detailed exposition.

In our initial implementation of COVE, one important
source of failures was floating-point instructions. Since the
current support for floating-point in SMT solvers is imma-
ture, COVE models floating point operations as uninterpreted
functions. For floating-point programs, a proof can fail be-
cause this modeling can be too imprecise. COVE addresses
this imprecision by constraining these uninterpreted func-
tions with universally quantified axioms and using these ax-
ioms during calls to its SMT solver (lines 3, 10 and 14 of Fig-
ure 4). Some of these axioms are unsafe and are included in
the reported condition if they are used. For example, associa-
tivity of floating-point addition is an unsafe axiom, whereas
commutativity is a safe axiom. Readers familiar with deci-
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Condition C := Φ ∧ P ∧ U
AbstractPre Φ := ΦAlign ∧ ΦA ∧ ΦB

Aliasing P := restrict X | P ∧ restrict X
UnsafeAxioms U := . . .

Figure 5. The grammar of inferred conditions. The condi-
tions shown to the user consist of aliasing relationships (P ),
alignment restrictions (ΦAlign), equality relationships (ΦA),
inequality relationships (ΦB), and unsafe floating-point ax-
ioms (U ).

sion procedure implementations may wonder whether trad-
ing immature floating-point reasoning for uncertain quanti-
fier reasoning is worthwhile, but in our experience current
SMT solvers are much better at handling quantifiers than
floating-point arithmetic.

The condition C shown to the user belongs to the gram-
mar in Figure 5. Here C consists of the condition Φ gener-
ated by abstraction, the aliasing relationships (Section 3.6)
composed of restrict on input pointers X , and the un-
safe floating-point axioms U that are required by the SMT
solver. The condition Φ is composed of alignment restric-
tions ΦAlign , bit-vector equalities ΦA, and bit-vector inter-
vals ΦB . A verification task need not require all possible
constituents. An example of a condition expressible by the
language in Figure 5 is that in all tests x = y, floating-point
multiplication of x with zero yields zero, the address in p is
16-byte aligned, the address in q is 8-byte aligned, and the
addresses obtained from p and q never overlap.

3.5 Alignment
Many x86 vector instructions require the input memory ad-
dresses to be properly aligned. Validating rewrites that con-
tain such instructions requires COVE to precisely reason
about alignment. We describe the abstract domain used by
COVE to infer alignment information. Consider the lattice L
with the following order:

⊥ v b64 v b32 v b16 v b8 v b4 v b2 v b1

The top value b1 represents one byte alignment. Since x86
is byte addressable, b1 is the top element of the lattice.
An abstract value bY represents Y byte alignment. For the
current x86 ISA, alignment beyond b64 is irrelevant. The
order represents stricter alignments: e.g., all pointers are byte
aligned and if some pointer is 16 byte aligned then it is
also 8 byte aligned. The join operator is simple: c t d =
max (c, d). Since this lattice is linearly ordered, the max
operator is well defined. The abstraction function α when
applied to a single pointer maps the address to its alignment,
and α is generalized to sets of addresses in the obvious way,
α(S) =

⊔
s∈S α(s). This abstract domain helps validate

many optimizations.
As an example, consider using this domain to infer con-

ditions for checking the equivalence of the programs shown

1 # T 1 # R
2 2
3 movlps (rax), xmm1 3 addps (rax), xmm0
4 movhps 8(rax), xmm1
5 addps xmm1, xmm0

Figure 6. A target program T along with an optimized
rewrite R. The two programs are equivalent if the address
in rax is 16 byte aligned.

in Figure 6. Here R loads 128 bits from the address con-
tained in the register rax, treats them as four 32-bit floats
a1, a2, a3, a4, treats 128 bits of register xmm0 as four floats
b1, b2, b3, b4, and then stores in register xmm0 the four
floating-point values a1 +f b1, . . . , a4 +f b4, where +f is
floating-point addition. T achieves the same computation
using three instructions. However, it is not always safe to
replace T by R as R aborts when the address in rax is
not 16 byte aligned. If the addresses in all tests are 16-byte
aligned then COVE would generate ΦAlign ≡ b16 (Figure 5)
as the condition and a decision procedure can then prove
conditional equivalence.

Finally, the example in Figure 6 is loop free. For pro-
grams with loops, COVE also finds invariants over the align-
ment domain to prove that the alignment is maintained by the
loop. These invariants are required to prove conditional cor-
rectness when the rewrites use instructions with alignment
restrictions in the loop body.

3.6 Aliasing
COVE performs VC generation using the DDEC algorithm
which is currently the only sound equivalence checker for
x86 [39]. The evaluation described in [39] indicates that
DDEC can take more than an hour to validate whether a given
set of invariants satisfy all the VCs for programs contain-
ing fewer than ten lines of 64-bit x86 assembly and three
memory dereferences. The reason for this inordinate time
requirement is that the VCs generated by DDEC are huge.
As discussed in Section 2, because DDEC attempts to prove
equivalence for all possible contexts, the VCs must model
executions under all possible aliasing configurations. This
problem is further exacerbated by the fact that x86 is byte ad-
dressable and dereferences with multiple bytes can partially
overlap. COVE mines the more restricted set of of aliasing
relationships P (Figure 5) from tests. COVE observes these
test executions and assigns as many restrict labels to the in-
put pointers as is consistent with the tests. These aliasing
relationships P are included in the output condition.

Next, COVE generates VCs that are specialized to the
aliasing assumptions specified by P . As a result the con-
straints generated by COVE are much more compact. For
our largest benchmark, the specialized constraints reduce the
number of aliasing configurations to consider by 30 orders
of magnitude over DDEC. In the best case, when no mem-
ory addresses overlap, the constraints generated by COVE
are linear in program size. Because in practice loops seldom
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CSTOKE(T : Target, H: Inputs)
Returns: A condition C and conditionally correct rewrite R

1: R := STOKE(T , H)
2: P := Aliasing(T , H)
3: V := VCGen(T , R, P )
4: S := RunTests(T , H ,V ) ++ RunTests(R, H , V )
5: Φ := COVE(V , S, [L, . . .])
6: RETURN (P ∧ Φ,R)

Figure 7. The binary optimizer described in Section 4:
STOKE generated rewrites are verified by COVE.

create additional aliasing [15], the constraints generated for
conditional equivalence are much more concise than those
generated for equivalence. On most of the benchmarks in
Figure 1, the huge constraints due to aliasing cause DDEC to
fail even when proving the equivalence of the target against
itself. Hence, STOKE is unable to discover any equivalent
rewrites for such kernels and fails to achieve any improve-
ments. To summarize, relaxing equivalence to conditional
equivalence not only leads to better optimizations (Section 2
and Section 5) but also leads to substantially more tractable
verification tasks.

4. Implementation
We describe an implementation of a binary optimizer that
generates conditionally correct binaries. We are given an
input program T , along with tests H and the goal is to find
another program R that is better than T by some metric
(which can be performance, code size, power, etc.) and also
conditionally equivalent to T under a condition C. In this
paper, our metric is performance.

The overall architecture of our binary optimizer is shown
in Figure 7. Our tool takes as input the program to be opti-
mized T and the inputs H . It runs STOKE (Section 4.1) on
T and produces a binary R that agrees with T on all tests in
H . Next, it mines the aliasing relationships P (Section 3.6),
which are used to obtain the VCs V (Section 3.6). After ob-
taining the concrete states S (by running T and R on tests in
H) which the unknown predicates in V must satisfy, COVE
(Figure 4) is called with V , S, and a list of abstract domains
(Section 3.3). The output Φ of COVE is conjoined with P to
obtain the output condition.

We describe STOKE briefly. A complete treatment of
STOKE is beyond the scope of this paper, and the reader
is referred to [35, 36, 39] for more information.

4.1 STOKE
STOKE [35] is a binary optimizer that separates optimiza-
tion and validation. STOKE consumes a program T and tests
H and makes repeated randomly selected changes to T to
produce a faster program R that is correct for the tests.
The random program changes are neither required to main-
tain correctness on the tests nor are required to improve

performance. The random changes include transformations
such as replacing a randomly chosen instruction with a new
randomly generated instruction, or swapping two randomly
chosen instructions, etc. Once STOKE has performed mil-
lions and sometimes even billions of random changes, it
asks a validator [39] to prove the equivalence of the result-
ing binary R and T . Unlike traditional compilers or exhaus-
tive enumeration based superoptimizers, the transformations
produced by STOKE are guided by a cost function defined on
test cases:

c(R;T ) = eq(R;T ) + perf(R;T )

The notation f(x; y) is read “f is a function that takes x as an
argument and is parameterized (that is, defined in terms of)
y”. The eq(·) term assigns a higher cost to rewrites R that
are “further” from being functionally equivalent to T . The
perf(·) term is a measure of the performance difference be-
tween R and T . STOKE searches for rewrites that minimize
the cost by making a random change to the current rewrite
R to obtain a new rewrite R′. If the cost of R′ is lower than
R then R′ becomes the current rewrite and the process is re-
peated again. If instead the cost of R′ is greater than the cost
of R, then with some probability we still update the current
rewrite toR′. This probability exponentially decays with the
difference of cost between R and R′ so that better rewrites
are chosen more often. STOKE runs for a fixed time budget
and outputs the lowest cost rewrite it finds that agrees with
T on all the given tests. This rewrite is subsequently verified
formally.

Randomized sampling techniques are generally effective
only if they are able to maintain a high throughput rate of
proposals. STOKE addresses this issue by constructing cost
functions that are very efficient to evaluate. For evaluating
eq(·) it checks the correctness on the given tests. For perf(·)
it sums the average latencies of the instructions. In a typical
run, STOKE is able to try hundreds of thousands of rewrites
per second.

The benchmarks that we consider contain a maximum of
one hundred lines of x86 assembly and are representative of
the length to which STOKE currently scales. Although this
scale is much smaller than what is expected from a compiler,
it is one to two orders of magnitude larger than what is
reported by other superoptimization techniques [3, 22, 27].
The scalability of STOKE is limited as it explores arbitrary
x86 programs. With more than 2000 different instruction
variants, the number of possible x86 programs grows very
quickly with length. However, STOKE’s current abilities are
sufficient to include many interesting kernels [35].

In [39], STOKE uses DDEC to prove the correctness of
the optimizations by proving equivalence. DDEC [39] can be
seen as a specific instantiation of COVE where the inferred
conditions are fixed to true and the abstract domain is fixed
to affine equalities. DDEC rejects the optimized rewrites pro-
duced by STOKE for almost all of our benchmarks (Sec-
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tion 5). As we shall see, one of the principal culprits in
the failure to prove equivalence is alignment restrictions re-
quired by the rewrite but not needed in the target. In [39],
DDEC is evaluated only on programs that consist exclusively
of fixed-point instructions, which have relatively few align-
ment restrictions in comparison to floating-point operations.
The generation of efficient code for our benchmarks (Section
5), most of which involve floating-point computations, often
requires the use of instructions with alignment restrictions.

In our binary optimizer, we replace DDEC with COVE as
the validator for STOKE optimizations and prove the condi-
tional equivalence according to Definition 1 using the same
tests that STOKE uses for optimization. Because COVE is
able to reason about the contexts in which the optimizations
are performed, the result is an effective binary optimizer that
uses STOKE for optimizations and provides formal guaran-
tees of correctness.

5. Evaluation
We evaluate the implementation of our binary optimizer
on a number of benchmarks that are representative of gcc
optimizations [30], the standard compute kernels that are
used by researchers to compare compilers [41], real world
applications such as a ray tracer [36] and MOSS, a document
fingerprinting system [37]. A more detailed description of all
the benchmarks is given in Section 5.4. For each benchmark
we demonstrate both the ability to produce code that is high-
performance and to provide the user with useful correctness
preconditions.

5.1 Setup
All experiments (performance benchmarking and verifica-
tion) were run on a machine with a 3.4 GHz Intel i7-4770
processor and 16GB of physical memory. For comparisons,
we use the compilers gcc-4.8 and Intel’s proprietary com-
piler icc-14.0.

The kernels can be divided into two categories: those that
are embedded in applications and standalone kernels from
the literature. Our binary optimizer requires tests to search
for a rewrite, infer the conditions and the invariants, and
evaluate the performance benefits of the optimizations. For
each of the stand-alone compute kernels, these tests are writ-
ten manually. For the kernels that are embedded in appli-
cations, we use STOKE’s built-in support for automatically
extracting test cases in the course of normal program exe-
cution. The applications manufacture inputs to the kernels
by calling random number generators. Hence, it is possible
to generate many tests by simply running the applications
multiple times. STOKE has a PinTool [26] that gathers pro-
gram states reaching the kernel during the executions of the
applications (see Section 4.3 of [39]). Since kernels are the
most frequently executed part of the application, they have
excellent coverage and we obtain many tests.
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Figure 8. Performance improvement relative to icc -O3
for icc using correctness preconditions discovered by
COVE, and cSTOKE.

Next, we select a subset of these tests for STOKE and
COVE (H in Figure 7). We randomly selected 32 tests from
a uniform distribution over those we generated for both
STOKE and COVE to use. The performance benefits are eval-
uated over remaining tests. We observe that a small num-
ber of tests are both sufficient to obtain high performance
rewrites that are also correct under reasonable conditions.
The primary reason for this result is that the loop bodies of
the kernels we consider contain only a few paths (at the most
16). Although this scale is small, it is a significant improve-
ment over previous superoptimizers which are all evaluated
on straight line assembly [3, 22, 27]. Nonetheless, for more
complicated benchmarks better test generation techniques
might be required [13].

STOKE’s search is run for 15 minutes and the best ob-
tained rewrite is selected. In many cases, the best rewrite is
found in the first few seconds. To verify the rewrite, COVE
needs to query an SMT solver (Figure 4). Our implementa-
tion of COVE uses CVC4 [5] which is able to evaluate all of
the SMT queries produced in the course of our experiments
in under one second. Based on these results, we believe that
the current generation of SMT solvers are sufficiently pow-
erful to validate conditional correctness for many of the op-
timizations that are currently performed on real-world ker-
nels.

5.2 Performance Results
A natural strategy for constructing a conditionally correct
optimizer is to combine COVE with a production compiler
by asserting the correctness preconditions discovered by the
former using the built-in support for annotations provided
by the latter. Below, we demonstrate that not only does our
binary optimizer outperform gcc and icc in isolation, but
also when they have been provided with the preconditions
discovered by COVE.

Figure 1 uses gcc -O3, the most aggressive optimiza-
tion level provided by gcc, as a performance baseline
for each of the benchmarks that we consider. The verti-
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cal bars labeled cSTOKE show the performance improve-
ment that we are able to obtain by running STOKE and
then using COVE to verify the conditional correctness of
those optimizations. To simulate a conditionally correct im-
plementation of gcc, we provide gcc with as much in-
formation about the inferred correctness preconditions as
possible. Where appropriate, we annotate kernels with the
restrict keyword (to indicate that pointers do not alias)
and the set of built in intrinsic utilities (for instance
built in assume aligned for alignment). Wherever

COVE used an unsafe floating-point axiom as part of a proof,
we provide the -ffast-math flag, which enables gcc to
use a superset of the axioms that are available to COVE.
With the exception of equalities and inequalities, the con-
ditions can all be provided as annotations or compiler flags
using the built-in support provided by gcc. The resulting
performance improvement is shown in the vertical bars la-
beled annot gcc -O3. Although for several benchmarks
the use of preconditions results in faster code, for ex3c
the annotated code is slower, and overall, the performance
improvements are well below those produced using STOKE.

Figure 8 compares STOKE against icc. The most aggres-
sive optimization level provided by icc (O3) is shown as
the performance baseline, and the performance improvement
obtained by providing icc with the preconditions discov-
ered by COVE is shown in the vertical bars labeled annot
icc -O3. The vertical bars labeled cSTOKE are identical
to those shown in Figure 1, only scaled to a different axis. As
with gcc, we observe that the use of annotations often helps
produce superior code. For three benchmarks STOKE fails
to produce faster code than icc. For these benchmarks the
code produced by icc relies heavily on software pipelin-
ing. STOKE currently uses a relatively simple performance
metric in its cost function (recall Section 4.1) that ignores
behavioral effects that cross loop boundaries, and as a result
STOKE’s code is worse than icc’s code on some bench-
marks. Moreover, since icc generated code is better than
gcc generated code for most (but not all) benchmarks, there
is less room for improvement and the speedups are lower in
comparison to Figure 1. Nonetheless, we observe that for
eleven out of eighteen benchmarks the code produced by
STOKE is significantly more performant than the icc gen-
erated alternative, either with or without annotations.

Finally, for almost all benchmarks, STOKE as described
in previous work [35, 39] is unable to achieve any improve-
ment over the baseline. Although the optimizations that it
produces are correct, it is unable to verify their correctness
primarily due to the exponentially many cases that occur
when aliasing is possible (see Section 3.6).

5.3 Verification Results
A breakdown of the correctness preconditions generated by
COVE is summarized in Figure 9. Before explaining the
details of Figure 9, we first explain the condition inferred
by COVE for Figure 2.

The inferred condition says that the two input vectors
v1 and v2 do not alias, that three of the memory derefer-
ences are always zero, and that this example requires un-
safe axioms for floating point. Formally, this is expressed as
P ≡ restrict(rdi) ∧ restrict(rsi), ΦA ≡ 8(rdi) =
(rsi) = 4(rsi) = 0, and U ; where U says that 0+f x = 0
and 0 ×f x = 0 assuming 0 is floating-point zero, +f is
floating-point addition, and ×f is floating point multiplica-
tion. The standard calling convention used by gcc/icc en-
sures that the first argument is in register rdi, the second is
in rsi, etc. Using this mapping, a condition can be presented
to the user at the source level. The condition P corresponds
to restrict(v1) ∧ restrict(v2). However, some condi-
tions contain offsets, e.g., ΦA requires that memory contains
0 at address 8(rdi), i.e., v1.z = 0. This translation is non-
trivial as the binaries do not contain information about types.
If the binaries contain debugging information then this map-
ping is straightforward, but is currently not supported by
COVE.

The first column “Benchmark” of Figure 9 is the name of
the benchmark. The second column P contains the aliasing
conditions inferred for the particular target program. We
use αi to denote the ith argument. The predicate ρ(αi, αj)
represents adding a restrict annotation to the ith and the
jth parameter. A check mark (X) represents that the inferred
aliasing conditions are successfully validated to be true for
all possible inputs statically. For example, a 4 byte array with
address 4(rsi) can never overlap with a dereference to a
byte-array at address 8(rsi) if the code between the two
dereferences does not modify rsi.

The third column ΦAlign represents the alignment condi-
tions. A predicate bX(αi) denotes X byte alignment of the
ith parameter. The fourth column, ΦA represents the condi-
tions that are equalities. The predicate a(b) = c represents
that the bit-pattern c is stored at address a + b. The abbre-
viation 0i represents the hex bit-string 0 . . . 0 that has zero
repeated i times. An entry I represents that even though
this abstract domain is not present in the condition shown
to the user, COVE needs this abstraction to find sufficiently
strong invariants. A blank entry signifies that the particular
abstraction is neither present in the conditions nor in the in-
variants. An entry Dn(αi) is syntax for the condition that
the ith parameter points to an n × n diagonal matrix and
hence it abbreviates O(n2) equations. The odd looking con-
stant 0x3ff023 is the bit-representation of 1.0 as an IEEE
754 double precision floating point number.

The fifth column, ΦB , represents intervals, i.e., inequali-
ties. The predicate αi < a represents that the 64-bit value in
the ith argument is strictly less than a. A check mark in the
sixth column, Safe, represents that a safe floating point ax-
iom was required for the proof. This is in contrast to a check
mark in the last column that signifies the use of an unsafe
floating point axiom. These unsafe axioms used by COVE
are valid for real numbers but not for floating point numbers
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Benchmark P ΦAlign ΦA ΦB Safe U

kmeans ρ(α1, α2) b16(α1), b16(α2) α3 < 224, α4 < 224

raysphere X α5 = 016, α8 = 0x3ff023 α1 < 228 X X
α1(α2) = α1(α3) = α1(α4)

ex3a ρ(α1, α2) b16(α1) I
ex3b X b16(α1) I X X
ex3c X b16(α1) I α2 < 220

test1 ρ(α1, α2) b16(α1), b16(α2) I I
test6 ρ(α1, α2) b16(α1), b16(α2) I I X

test10 ρ(α1, α2) b16(α1), b16(α2) I I
test13 ρ(α1, α2) b16(α1), b8(α2) I I
test17 ρ(α1, α2, α3) b16(α1), b16(α2), b16(α3) I I

add X X
smul X X

dotprod X X
delta ρ(α1, α2) 8(α1) = (α2) = 4(α2) = 08 X X

diag4 ρ(α1, α2, α3) D4(α1), D4(α2), D4(α3)
diag6 ρ(α1, α2, α3) D6(α1), D6(α2), D6(α3)
diag8 ρ(α1, α2, α3) D8(α1), D8(α2), D8(α3)

moss X α3 = α4 = 0x01420 α2 < 216

Figure 9. Conditions required to prove the conditional correctness of STOKE rewrites: aliasing relationships (P ), alignment
restrictions (ΦAlign), equality relationships (ΦA), inequality relationships (ΦB), safe floating-point axioms (Safe), and unsafe
floating-point axioms (U ).

and include associativity of multiplication and addition, dis-
tributivity of multiplication over addition, zero as additive
identity, and one as multiplicative identity. For benchmarks
that do not use unsafe floating-point axioms, COVE’s treat-
ment of the floating-point instruction set is sound.

5.4 Discussion
We now give a brief overview of the benchmarks. First, we
have the benchmarks from [41], where the authors imple-
ment standard compute tasks in C and R and compare per-
formance. We optimize the binaries generated by compiling
these C sources with gcc. The benchmark kmeans [41] is
the kernel of an unsupervised learning algorithm for cluster-
ing feature vectors. The primary source of optimization for
this code is the use of consistently small values in the input
data set. A similar property holds for the raysphere [41]
benchmark, which computes the distance to the closest inter-
section of a line and a set of spheres. In both cases, STOKE
is able to remove many of the computations emitted by gcc
that are redundant given these ranges. In addition, for the
input data sets of raysphere from [41], some values are
deterministically fixed to either zero or one. This property is

readily apparent in the test cases that we provide our binary
optimizer and leads to further performance improvements.

The speedups for the other benchmarks of [41] are less
than 10% and are omitted. Many of these benchmarks em-
ploy indirect addressing and are memory bound. Improv-
ing performance for these would require very different al-
gorithms or changing the data structure layout, neither of
which are within our present scope. The former would re-
quire invariants beyond the current capabilities of COVE(for
instance, quantified invariants) and the latter would require
global changes to the application instead of local changes to
a kernel. Other failure cases of STOKE include simple ker-
nels for which existing compilers produce good code and
there are no conditions to leverage.

The benchmarks ex3a through test17 are stand alone
kernels. These include array initialization (ex3a), reduc-
tion over an array (ex3b), use of multiple induction vari-
ables (ex3c), sum of two vectors (test1), nested loops
(test6), conditional vector sum (test10), complex in-
dexing (test13), and use of several arrays (test17). The
primary source of speedup on these benchmarks is the clever
use of vector instructions, which is safe only under aliasing
and alignment restrictions on the inputs.
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The next four benchmarks are from a ray tracer [36] that
spends the majority of its execution time in the following
four operations: vector-vector addition (add), scalar-vector
multiplication (smul), vector dot product (dotprod), and
the addition of random perturbations to a vector (delta).
The speedups are due to the use of vector instructions and
constant folding. For the dot product, gcc -O3 produces
what appears to be optimal code and as a result none of
the approaches described above are able to improve on the
result. We plug in these optimized kernel and the result is
an end-to-end speedup of over 2× for the whole ray tracer
application as a whole.

The diag4, diag6 and diag8 benchmarks multiply
two integer diagonal matrices and save the results in a third.
The original code uses the standard O(n3) matrix multi-
plication algorithm, and STOKE automatically rewrites the
code to use the asymptotically better O(n) algorithm that
ignores all the zero entires in the matrix. For these exam-
ples, we unroll the triply-nested loop and apply COVE as
if the code were straight-line. The only difference between
the benchmarks is the dimension of the matrix (4, 6, or 8).
Figure 1 shows that CHECK is slower than gcc -O3 for di-
mension 4, but faster with dimensions 6 or 8. This is because
the CHECK time is dominated by the checking routine which
runs in O(n2), and for very small inputs this is expensive –
but for larger inputs it’s much cheaper than running the orig-
inal code. If the checks are omitted then the speedups are
6×, 13×, and 20× for dimensions 4, 6 and 8 respectively
(cSTOKE in Figure 1).

The final benchmark moss is a rolling hash function
which is the performance bottleneck for MOSS [37], a
widely used system for detecting software plagiarism. Such
hash functions are also widely used in computational biol-
ogy and in commercial products that analyze network traffic.
STOKE is able to take advantage of the fact that the input ar-
ray of lexical tokens contains small integers that fit in 16
bits and employ bit-fiddling tricks, that are unsound in gen-
eral but are correct for the system-wide parameter settings
mined from the test cases, to obtain a 35% speedup. In a
usual run, MOSS spends about 40% of its execution time in
the hash function. The optimized hash function results in a
14% overall speedup in MOSS, a real application.

Finally, we note that in our initial work on the test10
benchmark (Figure 1), STOKE was able to obtain a nearly
5× speedup over gcc and icc due to poor branch coverage
in the manually written test cases. The correctness precondi-
tions produced by COVE alerted us to this fact and we were
subsequently able to add additional test cases to cover the
missing paths. We believe that since the conditions are com-
pact (Table 9), developers familiar with the codebase should
be able to comprehend the conditions and add the requisite
tests. Furthermore, this example reinforces the observation
that conditionally correct optimizations can lead to undesir-

able results if they are generated using test cases that do not
accurately represent actual runtime inputs.

5.5 Dynamic Condition Checking
To check preconditions at runtime, we add instrumentation
to the cSTOKE binaries that checks the inferred condition
and runs the conditionally correct code only if the condi-
tion is satisfied. It is straightforward to mechanically trans-
late the conditions that we generate to executable code. For
our benchmarks, we manually write a straightforward C pro-
gram that checks the conditions and compile it to generate
assembly. We then combine this assembly with the STOKE
generated binary and measure its performance (CHECK in
Figure 1). The advantage here is that this code is correct for
all inputs and places no verification burden on the user. Fig-
ure 1 shows that for most (but not all) benchmarks the per-
formance degradation is negligible and this correct code is
generally significantly better than the correct code generated
by gcc -O3.

6. Related Work
The literature on equivalence checking is rich and we limit
the discussion to formal approaches for x86. Sound equiv-
alence checkers for 64-bit x86 such as DDEC [39] can take
hours to validate small programs with less than ten lines of
code. Due to the large number of constraints caused by con-
sidering all possible program contexts, particularly with re-
spect to aliasing, these techniques do not scale to our bench-
marks. Moreover, DDEC works over a fixed abstract domain
(affine equalities) and COVE can find invariants over arbi-
trary abstract domains. This generalization is important be-
cause equalities alone are not always sufficient for verifi-
cation (Figure 9). In contrast, scalable (partial) equivalence
checkers for x86 such as [17] make unsound assumptions
such as loops do not run for more than two iterations, point-
ers do not alias, state elements are representable as integers
rather than bit-vectors, and that x86 is word rather than byte
addressable. Rather than make ad hoc unsound assumptions
with no underlying justification, the conditions generated by
COVE hold for all test cases. As a result, we have some rea-
son to trust the correctness of the conditions and we believe
that sound conditional equivalence is a feasible alternative to
unsound approaches.

Conditional equivalence has been suggested in [24] to be
a practical alternative to equivalence checking for two ver-
sions of a program. The technique presented in [24] is theo-
retically limited to checking conditional partial equivalence,
is purely static, and has been implemented only for loop-free
programs. Some verification engines are capable of emitting
preconditions under which a proof would succeed if they are
unable to verify the correctness of a program [7, 9]. In our
work, rather than having verification as the final goal, we use
COVE to generate better code.

13 2016/9/28



Systems that trade precision of floating-point programs
for performance are orthogonal (we prove bitwise equiva-
lence) and offer no formal guarantees [1, 29, 34, 36, 40].

The generation of invariants from test data was pioneered
by Daikon [11], which validates those invariants statically
using the unsound static analysis of ESC/Java [31]. Abstract
acceleration [21] can be used to obtain invariants for linear
loops without fixpoint iterations, although this technique is
inapplicable to bit-vectors. YOGI [6] is a weakest precondi-
tion based verification engine for Windows device drivers. It
specializes the weakest precondition to only include aliasing
relationships that are possible in an abstract trace to avoid
an exponential increase in constraints due to aliasing. Both
COVE and [44] use an iterative process in which candidate
invariants that are obtained by abstracting tests are updated
using abstract interpretation machinery and decision proce-
dures. The latter uses predicate abstraction to prove safety
properties and we use bit-vector abstract domains to prove
conditional equivalence.

The VCs that are generated by COVE fall into the cat-
egory of Horn clauses, for which several solution proce-
dures are available [14, 18]. However, these techniques all
rely on theory specific reasoning for unbounded arithmetic
(e.g., [18] uses Farkas’ lemma), whereas the VCs produced
by COVE are over bit-vectors.

Programmer feedback is used to facilitate optimizations
in several systems for interactive parallelization: [16, 25] re-
port dependencies that prevent loop parallelization. The sys-
tem of [43] asks a Java developer to promise restrictions
on the side-effects a statement can have. If the programmer
agrees, then the system can perform standard optimizations
such as dead code elimination. As in our work, these tools
can be used to generate conditionally correct code. However,
because COVE works in a very different domain (x86 assem-
bly), the optimization opportunities are different. These tools
infer assumptions only for a fixed set of transformations and
provide no formal guarantees beyond the optimized program
working correctly on the given tests. COVE solves a differ-
ent, and harder, problem by formally proving the conditional
correctness of a program of unknown provenance (also see
Section 2).

There are other superoptimizers besides STOKE and we
survey them here. The first superoptimizer by Massalin [27]
did not perform any formal verification and produced se-
quences of straight line assembly by exhaustive enumera-
tion. Bansal and Aiken [3] implemented an exhaustive enu-
meration based superoptimizer for x86 and verified the re-
sults are correct for all possible inputs using a SAT solver.
We believe that COVE can help by providing formal correct-
ness guarantees to Massalin’s superoptimizer and allowing
Bansal and Aiken’s superoptimizer to accept rewrites that
their conservative validator rejects. However, since these su-
peroptimizers operate on loop free sequences, the verifica-
tion task is much easier. Denali [22] and equality satura-

tion [42] use a given set of axioms and enumerate rewrites
that are correct for all inputs according to the axioms. These
do not benefit directly from COVE as they produce only cor-
rect rewrites.

7. Conclusion
Traditional compiler optimizers and superoptimizers are
limited in the optimizations they can perform by their lack of
knowledge of the actual inputs that may arise in the context
of a larger program. We have presented a verification method
for automatically constructing such preconditions from ob-
served runtime inputs to a kernel and then proving that the
kernel superoptimized to take advantage of those precondi-
tions is equivalent to the original whenever the precondition
holds. We show that a binary optimizer based on this verifier
can produce optimized kernels that are often multiple times
faster than those generated by production compilers.
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vanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In
CAV, pages 171–177, 2011.

[6] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons,
S. Tetali, and A. V. Thakur. Proofs from tests. IEEE Trans.
Software Eng., 36(4):495–508, 2010.

[7] M. Christakis, P. Müller, and V. Wüstholz. Collaborative
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A. Verification Conditions of Figure 3
We explain the verification conditions (VCs) shown in Fig-
ure 3. The first VC Init states the following:

∀x, x1, x2, x′1.Φ(x) ∧ x = x1 = x2 ∧ x′1 = 0⇒ I(x′1, x2)

Recall that the states of T and R consist of a value x of
a single variable x. This constraint is read as follows: we
consider an arbitrary state x s.t. the state x satisfies the
precondition Φ. The initial value of the variable x of the
program T is denoted by x1. The initial value of the variable
x of the program R is denoted by x2. Before T and R start
executing, both x1 and x2 are equal and have the value x.
Next, T executes x=0 and the new value of x in T denoted
by x′1 becomes 0. The execution of T has reached the loop
head. The execution of R reaches the loop head without
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changing x. Therefore, when R reaches the loop head for
the first time, x has the value x2. When executions of T
and R reach the loop head then their states should satisfy
the invariant I . Therefore, under these conditions I(x′1, x2)
should be true.

The second VC Ind states the following (all variables are
implicitly universally quantified):

I(x1, x2)∧x1 < 10∧x′1 = x1+1∧x2 6= 10∧x′2 = x2+1⇒ I(x′1, x
′
2)

Suppose we start the execution of the loop of T in a state
x1 and the loop of R in state x2. We do not know anything
about x1 and x2 except that they satisfy the invariant I , i.e.,
I(x1, x2) is true. Now assume T enters the loop. This can
happen only if x1 < 10. Also assume that R also enters
the loop. This can happen only if x2 6= 10. The loop body
of T updates the value of x. The new state x′1 is given by
x1 + 1. Similarly, the loop body of R updates the state of x
to x2 + 1, denoted by x′2. Since I is an invariant, these new
states should also satisfy I , i.e., I(x′1, x

′
2) should hold under

these conditions.
The third VC Partial states the following:

∀x1, x2.I(x1, x2, ) ∧ x1 ≥ 10 ∧ x2 = 10⇒ x1 = x2

Suppose we start the execution of the loop of T in a state x1
and the loop ofR in state x2 such that these states satisfy the
invariant I , i.e., I(x1, x2) holds. Suppose T exits the loop.
This happens only if x1 ≥ 10. Similarly suppose R exits the
loop. This happens only if x2 = 10. Then both programs
T and R terminate. We require that when both programs
terminate then they should terminate in equal states, i.e.,
x1 = x2 should hold.

The fourth VC Total states the following:

∀x1, x2.I(x1, x2)⇒ (x1 < 10⇔ x2 6= 10)

Suppose we start the execution of the loop of T in a state x1
and the loop of R in state x2 such that these states satisfy
the invariant I , i.e., I(x1, x2) holds. We want to ensure
that T exits the loop if and only if R exits the loop, i.e.,
T and R mutually terminate. Since T enters the loop iff
x1 < 10 and R enters the loop iff x2 6= 10, we should have
x1 < 10⇔ x2 6= 10 for the states satisfying the invariant I .
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