
BLACKBOX EQUIVALENCE CHECKING OF PROGRAM

OPTIMIZATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER

SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Berkeley Roshan Churchill

June 2019

© Copyright by Berkeley Roshan Churchill 2019

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Alex Aiken) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(John Mitchell)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Clark Barrett)

Approved for the Stanford University Committee on Graduate Studies

iii

Acknowledgements

I would like to especially acknowledge those friends who had a direct influence on

the preparation of this thesis. Eric Schkufza was the first one to introduce me to

superoptimization and to Alex Aiken’s lab at Stanford. In my first few years I

learned tremendously from him about organizing a large software project, and also

about making nice figures for papers. Rahul Sharma paved the way for much of

the work that I did. His work on data-driven equivalence checking opened up a

number of questions and new directions for research. His pointers along the way

were invaluable. Stefan Heule showed me the value of continuous integration tools,

and was a key collaborator on the STOKE codebase, especially when we were getting

our first research projects off the ground. Manolis Papadakis was always willing to

generously offer his time to answer my C++ questions. Oded Padon played a crucial

role in helping refine one of the main techniques presented in Chapter 5 of this thesis

– semantic program alignment. Without his assistance, that chapter would have

looked very different! Lastly, Alex Aiken played the indispensible role of supporting

me throughout the process, and especially helping me learn to focus on what is

important. It goes without saying that absent his mentorship there would be no

thesis.

It would be impossible to attempt to enumerate all those friends and family

members who have been supportive throughout my tenure as a PhD student. To all

of you, I offer my sincere love, gratitude and appreciation.

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Contributions . 3

2 Background and Related Work 6

2.1 Inductive Proof of Equivalence . 7

2.2 Translation Validation . 10

2.3 Data-Driven Invariant Inference . 11

2.4 Other Equivalence Checking Techniques 13

2.5 Bounded Equivalence Checking . 14

2.6 Modeling Memory . 14

2.7 Superoptimization . 16

3 Alias Relationship Mining 17

3.1 Motivating Example . 20

3.2 Technique . 21

3.2.1 Alias Relationship Mining Without Test Cases 22

3.3 Implementation . 23

3.4 Evaluation . 24

4 Sound Loop Superoptimization for NaCl 26

v

4.1 Introduction . 27

4.2 Motivating Example . 33

4.2.1 Bounded Verifier . 36

4.3 Implementation . 38

4.3.1 Bounded Verifier . 38

4.3.2 Sound Validation . 39

4.4 STOKE for Google Native Client . 44

4.4.1 Transformations . 44

4.4.2 Cost Function . 45

4.5 Evaluation . 47

4.5.1 Experimental Setup . 47

4.5.2 Comparison to Baseline Implementation 53

4.5.3 Memory Model Performance 54

5 Semantic Program Alignment 56

5.1 Introduction . 57

5.2 Example . 61

5.3 Formalization . 67

5.3.1 Proof Obligations for Program Alignment Automata 67

5.4 Equivalence Checking Procedure . 70

5.4.1 Construction of the Trace Alignment 70

5.4.2 Construction of the Program Alignment Automaton 71

5.4.3 Testing the Program Alignment Automaton 72

5.4.4 Learning Invariants . 73

5.4.5 Verifying Proof Obligations 75

5.4.6 Space of Alignment Predicates 75

5.5 Evaluation . 77

5.5.1 Experimental Setup . 77

5.5.2 Results . 79

5.5.3 GNU C Library strlen Case Study 81

vi

5.5.4 Comparison with Related Work 84

5.5.5 Search over Alignment Predicates 85

5.5.6 Evaluation of Memory Models 87

5.5.7 Limitations . 88

6 Conclusion 90

Bibliography 92

vii

List of Tables

4.1 Performance speedups obtained by superoptimization 49

5.1 Pairs of edges and corresponding paths. 64

5.2 Verification results for vectorization benchmarks 80

5.3 Comparison of solvers and memory models 88

viii

List of Figures

2.1 A simple equivalence checking example 8

2.2 Product program for the example . 10

3.1 An example for alias relationship mining 19

4.1 Search architecture of different stochastic superoptimization tools. . . 29

4.2 C source for running example. 33

4.3 An example program for superoptimization with verification 34

4.4 Language of invariants used for verification. 42

4.5 Speedups by benchmark following superoptimization and verification. 50

4.6 Success rates for superoptimization and verification 52

4.7 Comparison of our tool against baseline superoptimizer 53

5.1 Different compositions for two generic functions containing loops . . . 58

5.2 Running example for semantic program alignment 62

5.3 Example alignment of two execution traces 63

5.4 Simplified program alignment automaton for the example 64

5.5 Invariants for the example . 66

5.6 The equivalence checking algorithm. 70

5.7 Example of simplifying a program alignment automaton 72

5.8 Language of invariants used following semantic program alignment . . 74

5.9 Two implementations of strlen. 82

5.10 A difficult problem for equivalence checking via product programs. . . 89

ix

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

Developers of safety-critical systems rely on compilers to translate code in a

higher-level language, like C or C++, to a low level assembly language. If the com-

piler incorrectly generates code, it can introduce subtle but serious bugs into the

binary. Moreover, these bugs may be excruciatingly difficult to troubleshoot because

they belong to a layer of abstraction apart from the typical development environ-

ment. While mature compilers exist for many languages and machine architectures

today, even these are prone to bugs, particularly when the user supplies non-standard

compilation options or when compiling for a less common platform. The majority

of these bugs are introduced in optimization passes, in which the compiler applies

static analysis techniques to discover optimization opportunities. As a result, safety-

conscious users of compilers choose to either accept the risk of compiler bugs, or they

may turn off program optimizations to mitigate that risk. Ultimately, we want to

offer a third option: compile the code with aggressive optimizations, and formally

prove that the optimizations are correct.

Equivalence checking is the problem of formally verifying that two programs,

functions or procedures perform the same computation. Equivalence checking may

be applied to program binaries, web applications, bytecode and source code. Key

applications of equivalence checking include verifying the correctness of compiler

optimizations, optimizations performed by hand and software optimizations. Effec-

tive techniques for program equivalence checking also enable speculative optimization

techniques, such as superoptimization. Of particular interest is black-box equivalence

checking, wherein the equivalence checker operates only on the low-level code, and

does not have access to typing information nor knowledge of the program analyses

and optimization passes performed by the compiler.

In this thesis, we use black-box equivalence checking to verify the correctness of

optimized x86-64 code generated by compilers and superoptimizers. There are three

main ways this thesis expands the applicability of equivalence checking:

• we demonstrate how a method called alias relationship mining can be used

to generate efficient SMT queries for checking equivalence in the presence of

CHAPTER 1. INTRODUCTION 3

memory aliasing (Chapter 3);

• We advance the state of the art of loop superoptimization by showing that a

sound superoptimizer depends on both sound equivalence checking and bounded

equivalence checking (Chapter 4); and

• we introduce a new and powerful technique, called semantic program align-

ment, that allows checking the correctness of aggressive optimizations that

alter control flow (Chapter 5).

The next section describes these contributions in greater detail.

1.1 Contributions

One of the core difficulties, and often the most expensive part, of verifying proper-

ties of low-level code is reasoning about the program’s use of memory. Chapter 3

tackles the problem of generating SMT constraints to represent memory accesses. To

model memory accesses to the heap soundly, one must consider the possibility that

two memory accesses may alias. In general, if there are n memory dereferences in

a program, there is no a priori information about whether or not these dereferences

overlap with one another. In the general equivalence checking setting, one needs

to consider every possible combination of overlaps. This task may be offloaded to

the SMT solver using the theory of arrays, and often this solution is adequate, but

sometimes the SMT solver becomes stuck exploring the space of possible memory

reference overlaps too slowly. We introduce a technique, called alias relationship

mining (ARM) where we use test cases to guess and prove aliasing relationships

between the memory dereferences. ARM improves the scalability and predictability

of the equivalence checking routine; while guessing and proving the aliasing relation-

ships has a cost, it dramatically reduces the search space of aliasing configurations

that the SMT solver may need to check, which reduces the likelihood that the SMT

CHAPTER 1. INTRODUCTION 4

query is intractable. In Chapter 3, we describe how ARM works, but it is only fully

evaluated in the context of experiments presented in Chapters 4 and 5.

Superoptimization is a speculative optimization technique wherein an optimizer

searches for an optimal program within a search space. This is in contrast to tradi-

tional optimization techniques which depend on a pre-selected set of optimizations

programmed into a compiler. Not only are compilers limited to a fixed set of op-

timizations, but they often suffer from the phase ordering problem, in which the

order of optimizations performed can impact the performance of generated code;

superoptimizers avoid the phase ordering problem because they are agnostic to any

ordering of transformations. Chapter 4 focuses on fully-verified loop superoptimiza-

tion for realistic benchmarks. Past work on superoptimization generally focused on

loop-free code or did not provide formal guarantees of correctness. Previously, only

one work [59] demonstrated the viability of performing formally verified superopti-

mization for loops. However, that work only scaled to functions of up to 10 lines

of assembly code. The key scalability problem was that the superoptimizer did not

have enough test cases to guide it to correct and fast programs, and as a result the

equivalence checker would reject the optimizations. We demonstrate that a bounded

equivalence checker can be used as an intermediary between the superoptimizer and

the formal equivalence checker to guide the superoptimizer to a correct optimized

program. We demonstrate this technique specifically in the context of Google Native

Client (NaCl), a software fault isolation system; generating high performance NaCl

code is a hard optimization problem, and we show that our superoptimization tech-

nique is capable of obtaining speedups over production code shipped by Google. The

contributions in Chapter 4 include:

• A demonstration that stochastic superoptimization has a significant advantage

over conventional compiler technology for Google Native client; we demon-

strate a median speedup of 25% across 13 libc functions shipped with NaCl

by Google. Our optimized binaries may be used as a drop-in replacement and

are backed with a guarantee of formal equivalence to the original code.

CHAPTER 1. INTRODUCTION 5

• A new and robust architecture for stochastic program search over code contain-

ing loops. Our approach combines a bounded equivalence checker and a sound

equivalence checker for proving loop equivalence. This is the first application

of stochastic superoptimization to a real-world domain of programs with loops.

Semantic program alignment offers a powerful extension of equivalence checking

technology to a new class of benchmarks. Prior work on equivalence checking in a

black-box setting has been unable to prove the correctness of compiler optimizations

in the presence of unforeseen control flow optimizations on loops, such as vector-

ization, loop unrolling and loop peeling. The main issue has been that of aligning

executions of the two programs; in the past, many works have assumed a simple

one-to-one correspondence between the iterations of the loops of one program and

the loops of the other. We offer a general technique for aligning two programs using

test data, and demonstrate that this alignment technique is suitable for challenging

equivalence checking problems out of reach of prior work, most notably including

a formal proof that the handwritten vectorized strlen implementation that ships

with libc matches a reference version. Semantic program alignment is presented in

Chapter 5; the contributions of that chapter include:

• A novel and robust approach for semantics-driven construction of product pro-

grams using alignment predicates and trace alignments.

• A set of 56 realistic x86-64 benchmarks for evaluating equivalence checking

techniques on optimizations that alter control flow, such as loop unrolling,

loop peeling and vectorization.

• The first fully automatic black-box algorithm for proving the correctness of

vectorization optimizations as performed by modern compilers on x86-64.

• A demonstration of a useful, real-world application of our equivalence checking

technology to verify the correctness of a handwritten vectorized implementation

of the strlen function shipped in libc.

Chapter 2

Background and Related Work

6

CHAPTER 2. BACKGROUND AND RELATED WORK 7

2.1 Inductive Proof of Equivalence

Proof by induction is a basic technique used in many equivalence checking works. In

the simple case where the two programs each have one loop and the loops execute

the same number of times, induction may be performed on the number of loop

executions. The key is to use a relational invariant, I, which relates the states of

the two programs at each loop iteration; this forms the inductive hypothesis. There

are a few verification conditions, each of which make a statement about a loop-free

fragment of code; these can be discharged with an SMT solver.

• For a given input, both programs enter the loop body or both programs exit.

• If the loop body is entered, I must hold on the first iteration.

• If I holds after n loop iterations, then (i) both programs exit, or both programs

go on to the n + 1st loop iteration; (ii) if both programs continue, I holds on

the n + 1st loop iteration; and (iii) if both programs exit, then the output

values are provably equivalent.

This technique generalizes to scenarios involving more loops or nested loops when

the correspondence between loop executions between the two programs is still clear.

One starts by selecting a set of cutpoints, where a cutpoint is a pair of program points

– one from each program [59, 7]. One cutpoint is necessarily the entry point of both

programs, and another cutpoint corresponds to the exits. There must additionally

be a cutpoint in each loop. A simple approach is to prove that the two programs

operate in “lockstep”, meaning that, if both programs execute from the entry, then

they both transition to the same cutpoint. In practice, this means that both programs

enter a corresponding loop, or they both exit. The inductive step involves showing

that if both programs start at some cutpoint C, then they both transition to the

same cutpoint C ′. A relational invariant is chosen at each cutpoint that relates the

states of the two programs, and these relational invariants are used as the inductive

hypothesis.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

1 int f(int x, int n) {

2 // cutpoint A

3 int i, k = 0;

4 for (i = 0; i != n; ++i) {

5 x += k*5;

6 k += 1;

7 if (i >= 5)

8 k += 3;

9 // cutpoint B

10 }

11 return x;

12 // cutpoint C

13 }

1 int f’(int x, int n) {

2 // cutpoint A

3 int i, k = 0;

4 for (i = 0; i != n; ++i) {

5 x += k;

6 k += 5;

7 if (i >= 5)

8 k += 15;

9 // cutpoint B

10 }

11 return x;

12 // cutpoint C

13 }

Figure 2.1: A simple equivalence checking example [59]

Consider the example pictured in Figure 2.1 of an equivalence checking problem

arising from a strength reduction optimization. The functions f and f ′ are given

three cutpoints. Cutpoint A corresponds to program entries, cutpoint B is in the

loop bodies, and cutpoint C relates the exits. Notationally, if v is a variable in f , we

use v′ to denote the same variable in f ′. At cutpoint A we assume the input values

are equal, that is φA = {x = x′ ∧ n = n′}. At cutpoint B, one may guess or infer

the invariant φB = {x′ = x ∧ k′ = 5k} (see Section 2.3). At cutpoint C we hope to

prove φC = {x = x′}. The following proof obligations must be checked to guarantee

equivalence and these also may be discharged with an SMT solver:

• From cutpoint A, function f takes the branch to cutpoint C (short-circuiting

the loop) if and only if f ′ also does.

• If both f and f ′ short-circuit the loop, then both terminate and φC holds.

• If f and f ′ enter the loop and reach cutpoint B, then the invariant φB holds.

• From cutpoint B, function f takes another loop iteration if and only if f ′ also

does.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

• If f and f ′ execute from cutpoint B in states satisfying φB and execute another

loop iteration, then φB holds when both functions next reach cutpoint B.

• If f and f ′ execute from cutpoint B in states satisfying φB and both functions

exit without another iteration, then φC holds.

An alternative formulation of this technique is to compose the two programs into

one product program. Each execution of the product program corresponds to an

execution of both starting programs. Here, we can perform equivalence checking (or

checking of other relational properties) by using standard single-program verification

techniques on the product program. We learn invariants for each loop, and prove by

induction that they always hold. Then, we prove assertions which imply that the

two programs have the same outputs and that the loop executions of the product

program are in one-to-one correspondence with f and f ′.

For the example in Figure 2.1, one possible product program is depicted in Fig-

ure 2.2. Here we have renamed all the variables of f ′ so that they do not clash with

those of f , and have placed the statements in the loops of each of f and f ′ into one

loop. We add assert statements to check that f and f ′ take the same branches as

each other, and assert that the values of x and x′ are equal at the program exit.

Equivalence can be established by proving that the assert statements always fold.

We have thus reduced the equivalence checking problem to verifying assertions of a

single program, and the standard techniques (e.g. proof by induction with a loop

invariant) apply.

In the following sections, we see how different works approach the question of

identifying cutpoints and invariants, or constructing product programs. Translation

validation (Section 2.2) uses either static techniques or instrumentation of the com-

piler; data-driven techniques use test cases provided by a user (Section 2.3); and

some techniques use manually provided information.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

1 void ff ’(int x, int x’, int n, int n’) {

2 assume(x == x’ && n == n’);

3 int i, k, i’, k’ = 0;

4 for(i = 0, i’=0; i != n && i’ != n’; ++i, ++i’) {

5 assert ((i != n) ^ (i’ != n’) == 0);

6 x += k*5; x’ += k;

7 x += 1; k’ += 5;

8 if (i >= 5)

9 k += 3;

10 if (i’ >= 5)

11 k’ += 15;

12 }

13 assert(x == x’);

14 }

Figure 2.2: Product program for the example
.

2.2 Translation Validation

Translation validation [45, 50, 61, 57] verifies that optimization passes performed

by a compiler preserve program semantics. Often – but not necessarily – translation

validation is performed on intermediate representations after each optimization pass,

and has access to type information or other static analysis performed by the compiler

that may be difficult or impossible to derive from the assembly code in a black-box

setting [52]. Necula uses symbolic execution to learn the simulation relation between

two programs [45]. The technique requires that the compiler does not introduce

new branches into the program; as a result, this work cannot handle some compiler

optimizations, such as loop unrolling. By exploiting the correspondence between

branches, it is possible to identify pairs of program points (analogous to the cutpoints

described above) along with relational invariants which form a simulation relation,

which is leveraged for an inductive proof of equivalence. In this work, translation

validation can be performed without any instrumentation of the compiler. More

recent black-box equivalence checking work, such as [17], can be thought of extending

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Necula’s work with more general control flow.

Other works extend translation verification to loop optimizations using different

techniques. The authors of [71] add instrumentation to the compiler to generate an-

ticipated invariants for each optimization, and then these invariants are used to derive

verification conditions. Additionally, they consider how to deal with transformations

like loop tiling and loop unrolling that reorder execution. In [7] the authors detect

and prove the correctness of transformations that reorder loop iterations with less

information from the compiler, before proceeding to a second phase where cutpoints

are chosen and a dataflow analysis is used to infer loop invariants.

Some works take an entirely different approach to translation verification. In [36]

the authors instrument the compiler to generate a trace of program optimizations

performed, and each class of transformation is verified. A pre-defined set of verifica-

tion conditions for each type of transformation is built into the tool, so it requires

non-trivial work to support new optimizations. Equality saturation [62, 64] builds

graphs of expressions for each program, transforms the graphs via a series of rewrite

rules, and checks for equality. These approaches depend on the manually specified

rewrite rules and do not attempt to build a product program.

2.3 Data-Driven Invariant Inference

Daikon [46, 24] was the first dynamic invariant learning system used for verification of

single programs. The authors observe that guessing invariants from execution traces,

and formally checking them later, can be more efficient than guessing invariants

without any kind of dynamic analysis (as in [27]) or trying to statically analyze a

program to learn invariants. There has been extensive follow-up work outside the

context of equivalence checking [15, 58].

In [59] the authors offer a new way to dynamically learn invariants for equivalence

checking. The user provides a set of test cases to guide verification. Such test

cases may be generated randomly, by bounded techniques, or written manually by

CHAPTER 2. BACKGROUND AND RELATED WORK 12

developers. Given the test data, the two programs are run on each test case. At each

cutpoint, a set of pairs of machine states (σ, σ′) are collected. The goal is to learn a

relational invariant I such that I holds for each (σ, σ′) pair, while avoiding extremes

of overfitting and underfitting.

The following approach is shown in [59] to be particularly effective for invariants

in the class of linear equalities: given M variables from both programs at a cutpoint

and N pairs of data, one constructs an N×M matrix where the ith row corresponds

to one (σ, σ′) pair, and the jth column corresponds to one variable or register. The

nullspace of this matrix is computed over the field of rational numbers, and each

basis vector in the nullspace corresponds to a linear equality over the M variables

that holds over the data. Moreover, since the basis vectors span the entire nullspace,

the conjunction of linear equalities thus learned actually imply all linear equalities

over the data. (See [28] for background on linear algebra.)

These data-driven inference techniques are not sound, of course, but offer can-

didate invariants that may be used for subsequent verification. In some works, the

invariants learned from dynamic or static techniques need to be exactly correct to

succeed in verification. In others, it is sufficient to provide a set of candidate invari-

ants. For example, Houdini [27] introduces a technique where number of invariants

I1, I2, . . . , In are guessed with the expectation that some hold and some do not. Then,

one attempts to prove equivalence using the conjunction I1 ∧ · · · ∧ In as the invari-

ant. Some conjuncts will cause the proof to fail; these conjuncts are eliminated, and

the proof attempt is repeated. Eventually a fixed point will be reached where the

proof succeeds, or in the case that the set of invariants is insufficient, all conjuncts

are eventually discarded. Other works use symbolic execution to refine invariants

learned by dynamic techniques [15, 69].

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.4 Other Equivalence Checking Techniques

Dahiya [17] offers a novel black-box equivalence checking algorithm for compiler op-

timizations. They construct and check a product program called a joint transfer

function graph (JTFG) that aligns execution paths in the two programs for verifica-

tion. There are a few limitations, however. First, they require that branch conditions

of one program provably match branch conditions of the other. Second, they assume

that paths in one program correspond to sets of paths in the other, rather than allow-

ing a many-to-many relationship. Lastly, their algorithm does not scale well in the

case of loop unrolling and vectorization. In Chapter 5, we show how our techniques

overcome these limitations using a different approach to program alignment.

In [19, 20] authors use constrained Horn clauses to summarize the entire execution

of two programs and then use Horn clause solvers to prove equivalence. To make the

problem tractable, the authors introduce a transformation called predicate pairing,

where predicates from the two programs are combined into one predicate that models

both programs. These predicates usually correspond to matching one iteration of a

loop or one recursive step in one program with one in the other. The authors do not

report on their ability to handle optimizations such as vectorization or loop unrolling

where loop iterations or recursive steps are executed in one program more often than

the other.

Some works use manually provided specifications to perform alignment. For

example, in [38] the authors prove the correctness of some difficult compiler opti-

mizations, such as loop interchange, by using programmer-supplied templates which

imply a correspondence between loop-free code fragments. Other works allow users

to specify “control flow synchronization points” manually [37].

Polycheck [5] dynamically verifies the correctness of transformations of affine

programs that reorder iterations, such as tiling and sectioning. It uses a modified

compiler to generate an instrumented binary that performs checks at run-time.

In [22] authors verify loop parallelization and vectorization optimizations, but

are limited to cases where the control flow of the program remains the same for

CHAPTER 2. BACKGROUND AND RELATED WORK 14

all possible inputs, which excludes many practical situations. Other recent work

considers the correctness of peephole optimizations without loops [40], where authors

make progress on problems such as modeling undefined behavior.

2.5 Bounded Equivalence Checking

Bounded equivalence checking techniques have an altogether different goal – we de-

scribe it here due to its relevance in Chapter 4 of this thesis. Instead of a sound

guarantee that two programs are equivalent, a bounded equivalence checker will ver-

ify that all pairs of executions up to a certain length are equivalent. This is useful for

bug-finding; a bounded equivalence checker can determine if a short execution of both

programs exists that exhibits a semantic difference between them. Moreover, most

bounded techniques generate a counterexample that can be used to reproduce the

differing behavior. This technique is developed in SymDiff [31], differential symbolic

execution [49] and Currie’s work [16].

UC-KLEE [51] applies this technique to a real-world setting, where it is used

for the relational verification problem of checking that patches do not introduce

security vulnerabilities. The key problem with prior works is the exponential blowup

in paths that the bounded equivalence checker must consider. As a result, applying

the technique to whole programs is intractable. UC-KLEE instead performs under-

constrained equivalence checking, wherein individual functions may be compared

with each other. This increases the risk of false-positives, which the authors mitigate

through a number of heuristics.

2.6 Modeling Memory

All equivalence checkers, including bounded and unbounded checkers, need to encode

semantics for memory accesses into the SMT queries. The trouble is that, a priori,

any two memory accesses may or may not refer to the same location. In some

CHAPTER 2. BACKGROUND AND RELATED WORK 15

cases two memory accesses provably alias each other or provably access distinct

memory locations, and without this information an equivalence checker may be overly

conservative. Given N potentially aliasing memory accesses, each of size M , the

number of different ways that they can overlap is exponential in N , and also grows

with respect to M as well, so for large choices of N and M , considering each case

may be intractable (as seen in [59]).

There are a few approaches to this problem in prior work. An unsound technique,

which has been successfully used in [51] and other works, is to simply assume that

pointers which are inputs to a function do not alias. One sound technique is utilizing

an SMT solver that supports the theory of arrays. The program semantics are

encoded by updating and reading from a series of arrays, where each array represents

a snapshot of the heap state. Such tools are said to use a flat memory model since the

heap (and sometimes the stack too) are modeled as a single homogeneous key-value

store. A major advantage of this technique is simplicity, as it requires no separate

program analysis. The disadvantage is that the SMT solver must reason about all

the aliasing cases on its own; sometimes the SMT solver may do so efficiently, but

the solvers do not perform predictably or consistently. In the worst case, the solver

may traverse an intractably large number of cases and time out.

A refinement of the above technique is to partition memory accesses into sets

where accesses from set i cannot alias with accesses from set j [66]. Then, a separate

array can be used for each set of memory dereferences. The partitioning can be done,

for example, by applying a pointer analysis. In the Burstall model [11], memory

accesses are partitioned by types, with a separate heap for each different type used

in the program. For example, 4-byte integers may be stored in one heap, pointers to

strings in another, and so on. This is sound when the types of all the variables are

known statically, and the language can guarantee that references to different types do

not alias. Using separate heaps for each type reduces the number of cases to consider

– sometimes dramatically. However, on x86-64 there is no typing information from

a source language available for us, and in practice we frequently find memory reads

CHAPTER 2. BACKGROUND AND RELATED WORK 16

and writes of different sizes that alias (for example in vectorization optimizations).

Similarly, one may use a separate array to model the stack and the heap; this can

be done in situations where memory dereferences provably reference the stack or the

heap but not both.

Value Set Analysis (VSA) is a flow-sensitive, context-sensitive interprocedural

analysis that operates on low-level code containing pointers in the absence of types.

VSA tracks the set of integer values in the program using a strided interval domain.

There will naturally be cases where the abstraction works well and provides exactly

the desired information, and other cases where the overapproximated sets insuffi-

ciently constrain the aliasing relationships [4]. A disadvantage of VSA is that it

requires implementing some kind of abstract semantics for the entire instruction set.

Follow-up work suggests other abstract domains and an intermediate language to

simplify implementation of VSA [70].

2.7 Superoptimization

A motivating application for equivalence checking is superoptimization. A superop-

timizer optimizes a program X by searching for a faster program Y (in a potentially

large search space) that performs the same computation as X. The seminal work

on superoptimization by Massalin [44] simply tests that two code fragments gener-

ate the same outputs when run on a large number of inputs. Likewise, more recent

works have skipped formal verification, especially in the domain of floating point

codes where verification is more difficult [54]. STOKE [53, 55] and other superopti-

mizers [42, 35, 29] improve on this by using an SMT solver to check equivalence for

straight-line code. DDEC [59] was the first use of an equivalence checker to verify

superoptimized code containing loops – but this was limited to only small examples

of less than ten lines of assembly code. In Chapter 4, we show how equivalence

checking enables superoptimization of loops in a real setting.

Chapter 3

Alias Relationship Mining

17

CHAPTER 3. ALIAS RELATIONSHIP MINING 18

A major problem for sound equivalence checkers is the exponential growth in

the number of ways in which memory dereferences may alias. In general, every pair

of memory references must be compared, and for each pair of references, there are

often several cases; the two references might be non-aliasing, but if they do alias

and are both larger than one byte in size (the smallest addressable unit on x86-64),

then there are several ways that the two references may overlap. The number of

combinations grows rapidly with the number and size of memory accesses, and every

possible case must be considered. Past authors use source code information, static

analysis, or offload the problem to the SMT solver. However, a black-box equiv-

alence checker does not have access to source code information, and implementing

a program analysis like VSA [4] with sufficient accuracy can be prohibitively time-

consuming. We instead introduce alias relationship mining (ARM), a new technique

which uses test data to soundly reduce the number of aliasing cases by several orders

of magnitude. ARM allows equivalence checking techniques to support a broader

class of benchmarks reliably, without encountering timeouts when checking proof

obligations.

The basic idea behind ARM is that one can discover which memory locations

alias by executing the code and monitoring the execution. In many cases, a single

execution or a few executions are representative of the aliasing behavior of all ex-

ecutions, and by observing such executions we can form general hypotheses about

which memory accesses can alias, and what overlap exists (if any). We then use an

SMT solver to check these hypotheses. Whichever hypotheses are shown to hold for

all executions are used to reduce the number of cases that need to be considered to

prove equivalence.

ARM is well suited to data-driven systems such as superoptimizers where test

cases are already available. There is a great deal of existing work in the symbolic

execution, program analysis, and bounded model checking communities on memory

models (see Section 2.6), and there are other approaches to avoiding worst-case

behavior in analyzing aliasing. One advantage of ARM is that there is no need to

CHAPTER 3. ALIAS RELATIONSHIP MINING 19

f

movl esi , esi

movl (r15 ,rsi), edx #a

movl edi , eax

addl 4, esi

movl edi , edi

movl edx , (r15 ,rdi) #b

addl 4, edi

testl edx , edx

movl esi , esi

movl (r15 ,rsi), edx #c

addl 4, esi

movl edi , edi

movl edx , (r15 ,rdi) #d

addl 4, edi

testl edx , edx

retq

g

movl esi , esi

movl (r15 ,rsi), edx #a’

addl 4, esi

nop (23)

movl edi , eax

movl edi , edi

movl edx , (r15 , rdi) #b’

shrl 1, edx

movl esi , esi

movl (r15 ,rsi), edx #c’

addl 4, esi

movl edi , eax

movl edi , edi

movl edx , (r15 , rdi) #d’

shrl 1, edx

retq

Figure 3.1: Two unrolled functions that perform a wide-string copy for input strings
of length 2 (including null-terminator). The code is ATT syntax with % and $
prefixes removed for space. Accesses a, a′ read the first source character; b, b′ write
this character into the destination; c, c′ read the second (null) character; and finally
d, d′ write the null character into the destination.

write separate semantics for x86-64 instructions, like those which would be necessary

to implement a separate pointer analysis.

In this chapter we offer only a brief introduction to ARM and a minimal exper-

iment to demonstrate its utility. Both Chapters 4 and 5 use ARM as part of the

implementation of equivalence checkers, and only in the context of those chapters is

ARM truly evaluated.

CHAPTER 3. ALIAS RELATIONSHIP MINING 20

3.1 Motivating Example

Figure 3.1 shows two loop-free fragments of x86-64 code for which we wish to check

equivalence. These loop-free fragments arise from unrolling generated code from

the wcpcpy benchmark, which will be discussed further in Section 4.2. These two

fragments perform a string copy on 4-byte wide character strings, where the input

has only one non-null character followed by a null terminating character. This code

contains eight memory accesses in total, four in f (labeled a, b, c, d) and four in g

(labeled a′, b′, c′, d′). In this example, the accesses are in one-to-one correspondence;

when executed, the addresses dereferenced by f are always the same as those deref-

erenced by g. Moreover, accesses a and c always refer to the consecutive 4-byte wide

characters in the source string; similarly b and d refer to consecutive characters in

the destination.

It would be tempting, but incorrect, to model the memory with four 4-byte

non-overlapping pseudo-registers, one for each pair of corresponding accesses. The

problem is that the source and destination strings may overlap, which happens when

the initial state satisfies %rsi− %rdi= ε, for −8 < ε < 8. Thus, we must consider 15

cases, one for each value of ε, and then one more when the strings do not overlap.

Each case corresponds to an aliasing configuration, which is a description of how

the memory accesses overlap. For a given aliasing configuration, we can model the

memory as a set of pseudo-registers. Therefore, to prove equivalence of f and g,

we must give a total of 16 queries to the SMT solver, one for each possible aliasing

configuration.

Some works model memory by enumerating all possible aliasing configurations,

which very quickly becomes intractable: There are over 50 million aliasing config-

urations for eight 4-byte memory accesses, if we do not use the relations described

above (e.g. a, a′ alias; a, c are consecutive; etc.). This approach makes verification

infeasible for all but the smallest examples. For example, the DDEC validator in [59]

took two hours to validate two assembly sequences with less than 10 LOC and two

dereferences each.

CHAPTER 3. ALIAS RELATIONSHIP MINING 21

In alias relationship mining, we run f and g on a set of concrete test cases to learn

these aliasing relationships. Let A(µ) denote the symbolic address of memory access

µ. In our example, we learn the following from concrete data: A(a) = A(a′), A(b) =

A(b′), A(c) = A(c′), A(d) = A(d′), A(c) = A(a) + 4, A(d) = A(b) + 4. We verify

these relationships by translating them into bitvector formulas and verifying their

validity with the SMT solver. For example, A(a) = %r15 + %rsi and A(c) =

%r15 + %rsi + 4, so to verify that A(c) = A(a) + 4, we query the SMT solver

with %r15 + %rsi + 4 6= (%r15 + %rsi) + 4; when the solver reports “unsat”,

this proves the relationship holds. We use the verified relationships to model the

memory state with pseudo-registers. In this example, we use two: an 8-byte register

for accesses a, a′, c, c′ and another for b, b′, d, d′. These two pseudo-registers may or

may not overlap; we have to invoke the SMT solver a total of 16 times, one for each

possible aliasing configuration.

3.2 Technique

Given f and g, our goal is to model every memory access as a read or write to a set

of pseudo-registers. We assume that f, g are unrolled loop-free code, so enumerat-

ing all memory dereferences is trivial. The problem is that we do not know if two

accesses will reference the same memory location, different locations, or if they will

partially overlap. We use test cases x1, . . . , xn to learn aliasing relationships between

the different accesses. Usually n = 1 is sufficient. Let A(µ) denote the symbolic rep-

resentation of the address dereferenced by access µ; we derive A(µ) through symbolic

execution of f and g. For a pair of accesses µ and ν, an aliasing relationship is a

statement of the form A(µ)− A(ν) = ε, where ε is an integer constant.

Let Aj(µ) denote the concrete address of memory access µ when f or g is run

on test case xj. For each pair of memory accesses, µ and ν, we check if the concrete

values εj = Aj(µ) − Aj(ν) are constant for all j. If so, then we infer the aliasing

relationship A(µ)−A(ν) = ε. We then use the SMT solver to check if this statement

CHAPTER 3. ALIAS RELATIONSHIP MINING 22

is valid.

Once finished, we have a set of verified relationships of the form A(µ∗i)−A(ν∗i) =

ε∗i . We place the memory accesses into equivalence classes, where the related accesses

µ∗i and ν∗i are in the same class. Memory accesses in the same class are at a fixed

offset to each other. We can model the memory used by all the accesses of one class

with a fixed-size pseudo-register. Each access corresponds to reading or writing a

sub-range of this pseudo-register. These pseudo-registers may overlap; we explicitly

enumerate all the ways they may do so, and invoke the SMT solver once for each

aliasing configuration.

3.2.1 Alias Relationship Mining Without Test Cases

In the absence of test cases, one cannot predict the difference A(µ) − A(ν) simply

by inspecting traces of executions. There are two remedies for this problem – both

of which we have implemented.

One approach, which is limited in scope, is to use a domain-specific heuristic

to guess a superset of relationships of the form A(µ) − A(ν) = ε that may hold

and then use the SMT solver to check them. In our superoptimization work on

string benchmarks (see Chapter 4), we were able to guess that memory dereferences

are likely to be adjacent. For example, if a benchmark iterates over a string of 4-

byte characters, then we would expect that there exist accesses µ and ν such that

A(µ) − A(ν) = 4. By testing for this relationship for all pairs of accesses, we can

find all the equivalence classes described above.

A more general approach is to dynamically generate more test cases with an

SMT solver, and then use the execution traces to learn the value for ε. This works

well in practice, and the queries to the SMT solver are simple. In the context of a

whole-program equivalence checker, we typically only need the test case to satisfy

the invariant relating the execution states of f and g before the two code fragments

are run. We implemented this approach for our semantic program alignment system

(see Chapter 5).

CHAPTER 3. ALIAS RELATIONSHIP MINING 23

3.3 Implementation

Correctly and efficiently enumerating all the ways that different equivalence classes

may overlap is easy when there are only two classes to consider. However, with three

or more equivalence classes, a good implementation becomes quite tricky. Moreover,

invoking the SMT solver repeatedly with very similar problems can sometimes put

the solver at a disadvantage. This problem can be remedied by using the push and

pop features of SMT solvers, but this fix makes constraint generation even trickier

to implement. There are a few ways to simplify the implementation, however.

First, one can attempt to prove that memory dereferences in different equivalence

classes never overlap. If this property holds, then there is only one case for the SMT

solver to check. To establish this property, one can attempt to prove an overlap is

impossible for each pair of memory dereferences belonging to different equivalence

classes. However, this is unnecessarily expensive; an optimization is to coalesce

adjacent memory dereferences in the same equivalence class first.

A second approach is to utilize the theory of arrays. Suppose there are m equiv-

alence classes of size s1, s2, . . . , sm. To generate constraints, we introduce a bitvector

variable Xi to represent the address of the ith equivalence class. An array A rep-

resents the state of the heap. When generating a constraint for an instruction with

a memory access in class j, we use the expression A[Xj + k] to reference the mem-

ory. The advantage over the flat model can be understood by considering the inner

workings of the SMT solver.

SMT solvers utilizing the theory of arrays need to use other theories to prove

whether two array indices are equal or not – and, in the worst case, this may be needed

for every pair of array indices. Usually only the theory of bitvectors is necessary,

but so too may be the theory of uninterpreted functions if benchmarks use opaque

functions to address memory. In the general case, performing this computation might

be very difficult, depending on the actual array indices. However, with our technique,

we know exactly how difficult it is to determine the (dis)equality of array indices:

for constants k1, k2, the validity of Xi + k1 = Xi + k2 or Xi + k1 6= Xi + k2 can

CHAPTER 3. ALIAS RELATIONSHIP MINING 24

be determined by unit propagation alone if transformed into a boolean satisfiability

problem. Comparing Xi + k1 and Xj + k2 will be harder, but this is indeed the

necessary case-work; if the solver introduces the clause Xi + k1 = Xj + k2, this

corresponds to exactly the aliasing configurations where Xi − Xj = k2 − k1, and

the unit propagation will then be sufficient to find the remaining equalities and

disequalities for the theory of arrays to reason about the equivalence classes indexed

by Xi and Xj. The SMT solver’s performance ultimately depends on the heuristics

and implementation details within the solver, but this implementation technique

helps increase the likelihood that the solver searches the space of partial satisfying

assignments efficiently while keeping the implementation simple.

This technique was implemented for our experiments in Chapter 5, and we show

that it is helpful in proving the correctness of benchmarks where the flat memory

model fails. However, we do not evaluate this technique in depth or directly compare

it to a brute-force enumeration of aliasing configurations outside the SMT solver.

3.4 Evaluation

The key difference between alias relationship mining and the flat memory model is

that ARM performs at least some reasoning about the aliasing of memory locations

outside the SMT solver, while the flat memory model offloads this work entirely to

the solver. Consequently, the performance of the flat model is more subject to the

peculiarities of the implementation of the underlying solver. We find that the flat

model outperforms ARM in many small examples, but does not scale predictably.

ARM scales more gracefully and can handle a larger fraction of verification tasks.

As a benchmark, we took 1128 verification tasks from our superoptimizer and

performed verification twice, once with the alias relationship mining model, and once

with the flat model. We find that the flat model timed out (after one hour) on 180

of them, but the ARM model timed out on only 24. However, for the verification

problems where both models succeeded, the flat model had a much better average

CHAPTER 3. ALIAS RELATIONSHIP MINING 25

time of 24s per task compared to ARM with an average time of 554s per task.

In Sections 4.5.2 and 4.5.3 of this thesis we show how ARM enables superopti-

mization; without ARM, we cannot verify the correctness of the fastest optimized

programs. ARM is also used to discharge the proof obligations described in Sec-

tion 5.5 and is necessary to verify the correctness of some benchmarks without time-

outs (see Section 5.5.6).

Chapter 4

Sound Loop Superoptimization for

Google Native Client

26

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 27

4.1 Introduction

Software fault isolation (SFI) is a sandboxing technique to isolate untrusted code

from a larger system [65, 12, 67, 56, 43]. Google Native Client (NaCl), a SFI system

shipped with Google Chrome, safely allows untrusted extensions to be loaded into the

web browser [67]. NaCl has been shown to be a robust real-world security technology;

Google offers a $15,000 bug bounty for a sandbox escape [1]. SFI systems use a

compiler to produce a specialized binary that obeys certain syntactic rules. To

guarantee security, the SFI loader invokes a verifier to ensure the binary satisfies

these rules. Specifically, the rules restrict the addresses of memory accesses and

indirect jump targets at runtime.

However, performance is a “significant handicap” for SFI [56]. Currently, there is

a performance penalty that all users of NaCl and other SFI implementations pay for

the security guarantees. Building an optimizing compiler for SFI systems is difficult

because of a pronounced phase ordering problem: Either a compiler can generate

well-formed SFI code and then optimize it for performance, or it can generate op-

timized code and adjust it to obey the SFI rules. Both of these approaches lead to

sub-optimal performance. Moreover, without verification, the optimizations have no

formal guarantees of correctness [45, 39].

In contrast, search-based program optimization techniques start with a compiled

target program, and attempt to search for a semantically equivalent rewrite with

better performance characteristics. These tools, sometimes called superoptimizers or

stochastic superoptimizers, make random modifications to the target code to generate

candidate rewrites. The rewrites are evaluated with a cost function that estimates

correctness, performance, and other properties. Correctness is generally estimated

by running the code on test cases (either provided by the user or generated automat-

ically). After an improved rewrite is found, a sound verification technique is used to

verify correctness.

Superoptimization techniques address the phase-ordering problem by simultane-

ously considering a program’s merit according to all desired criteria. Our hypothesis

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 28

is that superoptimization can significantly improve SFI code generated by exist-

ing toolchains and offer a formal guarantee that the optimizations are correct. We

demonstrate our hypothesis holds by optimizing frequently-used, and often perfor-

mance critical, libc string functions that ship with NaCl (see Section 5.5). This

chapter focuses on the technical problems we needed to solve to extend superopti-

mization techniques to this new domain.

The key obstacle in applying existing superoptimization techniques to NaCl is

simply the presence of loops in NaCl code. While prior work [59] extended super-

optimization to small loop kernels of up to ten lines of x86-64 code, the loops that

appear in real code are larger. We attempted to use the STOKE tool [53, 59, 55]

for our initial NaCl superoptimizer. However, there are two general problems which

caused the baseline STOKE to fail to optimize loops in NaCl code.

First, the search was guided exclusively by handwritten test cases. For small

examples these tests suffice. However, more complex programs often have corner

cases infrequently exercised by such tests. Past work on synthesizing straight-line

code uses counterexamples from verification to guide the search (see Figure 4.1b).

However, there is no general method for generating counterexamples from sound

equivalence checking procedures for loops. The little existing work on search-based

optimization of loops does not use automatically generated counterexamples when

correctness proofs fail (see Figure 4.1a), greatly limiting its ability to generate correct

rewrites.

The second problem with our baseline implementation was an unexpected bias

toward finding high-performance rewrites which were unlikely to be correct. The goal

of the search is to find the fastest possible program that passes all of the test cases.

Unsurprisingly, running the search for longer generally produces more performant

results: over time, the search finds faster and faster programs. However, faster

programs are also more likely to be overfitted to the test cases, and the search

component has no mechanism to distinguish between correct and incorrect programs

when all tests are passed. Retaining only the fastest such rewrite usually results in

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 29

Search

Verification FinishedTraining Tests

(a) Search without automatic test case generation [59, 60].

Search

Straight-Line
Verifier

Add Test Case Finished

(b) Search with automatic test case generation for straight-line code [53, 55].

Search

Bounded
Verifier

Add Test Case Sound Verifier

(c) Search with two-stage verification and general automatic test case generation (this
work)

Figure 4.1: Search architecture of different stochastic superoptimization tools.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 30

failure during verification.

Our solutions to these two problems are simple, general, and result in dramatic

improvements to our loop optimizer. We introduce a two-stage verification process

with both a bounded verifier and a sound verifier, as shown in Figure 4.1c. A bounded

verifier performs a partial proof of equivalence. For a user-supplied bound parameter

k, it checks whether the target f and the rewrite g agree on all inputs for which every

loop in each program executes for at most k iterations. If the check fails, then the

bounded verifier produces a counter-example demonstrating the difference. Other-

wise, the programs are equivalent up to the bound k, and the differences (if any) can

only be demonstrated by running the bounded verifier with a higher k. In contrast,

the sound verifier performs a sound proof of equivalence. Proving equivalence of two

loops involves discovering and checking sufficiently strong loop invariants, which is

fundamentally different from the approach taken by the bounded verifier. It is not

obvious how to generate counterexamples from failed proofs of equivalence, nor is it

even possible to do so in general.

We integrate the bounded verifier into the search loop to guide the search and

identify the best rewrites. The stochastic search procedure generates successively

improving rewrites that pass all of the current test cases and are estimated to perform

better than the target. For each of these, we run the bounded verifier; if the bounded

verifier accepts the rewrite, we add the rewrite to a store of candidate rewrites to

formally verify later. Once the complete set of candidate rewrites is generated, we

run the sound verifier on each of them, starting with the ones expected to perform

best, until a provably correct rewrite is found. If, however, the bounded verifier fails,

it generates a counterexample which is used as a new test case and is added to the

running search. This approach helps guide the search from an incorrect rewrite to a

correct one when the initial set of test cases is insufficient.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 31

A limitation of bounded verification techniques is that their automatically gen-

erated test cases usually only run for a very small number of loop iterations. Con-

sequently, we still require an initial set of longer-running tests to evaluate the per-

formance of a rewrite. However, it is no longer necessary for user-supplied test cases

to cover corner cases to guide the search to a semantically correct rewrite. The test

cases we use in our experiments are generated randomly, rather than being hand-

tuned as in previous work. The need for test cases to characterize performance is

analogous to profile directed optimization [13, 3].

To evaluate our work, we implemented our new architecture as an extension to

STOKE. We evaluate our implementation on a collection of 13 libc string functions

shipped with the NaCl toolchain. We have chosen to focus on string and array bench-

marks for three reasons. First, strings and arrays are ubiquitous in assembly code;

any serious attempt at optimizing x86-64 assembly must handle them. Second, there

are many applications where string and array functions are the chief performance

bottleneck. Third, they present a real challenge, especially due to the possibility of

arbitrary memory aliasing in the generated rewrites.

The formally verified binaries generated by STOKE improve performance on

these production benchmarks by up to 97%, with a median and average of 25%.

We also show that alias relationship mining (see Chapter 3) increases the number

of verification tasks that can be completed. In summary, this chapter makes the

following contributions:

• We demonstrate that stochastic superoptimization has a significant advantage

over conventional compiler technology in optimizing SFI binaries. We achieve

a median speedup of 25% across 13 libc binaries shipped with NaCl by Google.

Our optimized binaries may be used as a drop-in replacement and are backed

with a guarantee of formal equivalence to the original code.

• We introduce a new and robust architecture for stochastic program search for

code containing loops. Our approach combines a bounded verifier with a sound

verifier for proving loop equivalence. This is the first application of stochastic

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 32

superoptimization to a real-world domain of loop functions.

• We detail enhancements to DDEC, the sound verification algorithm for proving

loop equivalence introduced in [59]. DDEC is part of both our baseline and

improved implementations. The enhancements make verification more robust

in the presence of complex control flow.

The rest of the chapter is organized as follows. Section 4.2 offers an example of our

techniques applied to one of our benchmarks. Section 4.3 details the implementation

of the bounded and sound verification techniques. Section 4.4 discusses the extensions

to STOKE required for generating NaCl code. In Section 4.5, we demonstrate our

contributions empirically.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 33

1 wchar* wcpcpy(wchar* edi , wchar* esi) {

2 wchar* eax;

3 do {

4 wchar edx = *esi++;

5 eax = edi;

6 *edi++ = edx;

7 } while (edx != 0);

8 return eax;

9 }

Figure 4.2: C source for running example.

4.2 Motivating Example

Figure 4.2 gives C code for our running example, derived from the wcpcpy libc rou-

tine (string copy for wide character strings). In Figure 4.3 this function is compiled

(the target code), and a rewrite is also shown. The rewrite is an example of an

incorrect rewrite that may be produced by the STOKE superoptimizer. We will use

this example to show the utility of bounded verification during search. Note that,

even though the platform is 64-bit, NaCl treats all pointers as 32-bit. This example

uses 32-bit wide characters.

The target and rewrite code in Figure 4.3 both obey the NaCl rules. In x86-64,

an instruction is composed of an opcode and one or more operands. The opcode

describes the functionality of an instruction, e.g., mov, add, etc. The suffix (e.g.

l or q) denotes the width of the operands. An operand specifies what values to

operate on. The operand can be a register (such as %eax), a memory operand (such

as (%r15,%rdi)) or an immediate (a constant, like $4). Some details are:

• The register %edi points to the destination string and %esi points to the source

string. The x86-64 ISA has 64-bit registers %rdi, %rsi, %r15, etc. The register

%edi represents the lower 32 bits of %rdi. The mov instruction copies bits in

the first argument to the second argument. Any instruction that writes to a

32-bit register also zeros the top 32 bits of the corresponding 64-bit register.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 34

Target

1 .begin:

2 movl %esi , %esi

3 movl (%r15 ,%rsi), %edx

4 movl %edi , %eax

5 addl $4 , %esi

6 movl %edi , %edi

7 movl %edx , (%r15 ,%rdi)

8 addl $4 , %edi

9 testl %edx , %edx

10 jne .begin

11 retq

12

13

14

15

16

17

Rewrite

1 movl %esi , %esi

2 movl (%r15 ,%rsi), %edx

3 addl $4 , %esi

4 nop (23)

5 .begin:

6 movl %edi , %eax

7 movl %edi , %edi

8 movl %edx , (%r15 ,%rdi)

9 shrl $1 , %edx

10 je .exit

11 movl %esi , %esi

12 movl (%r15 ,%rsi), %edx

13 addl $4 , %esi

14 jmpq .begin

15 nop (31)

16 .exit:

17 retq

Figure 4.3: A target and rewrite for wcpcpy. This benchmark performs a string copy
of 4-byte wide characters.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 35

For example, line 2 of the target leaves the lower 32 bits of %rsi unchanged

and zeros the top 32 bits. This operation is important for the memory deref-

erence at line 3 to be valid; NaCl requires memory operands to be of the form

k1(%r15,X,k2), where X is a 64-bit register whose top 32 bits are cleared by

the previous instruction. This operand represents accessing memory at address

k1 + %r15 + k2X. When unspecified, k1 = 0 and k2 = 1.

• The jne on line 10 of the target redirects the control flow to line 1 if %edx is

nonzero and to line 11 otherwise. A jmp redirects control flow unconditionally.

NaCl has rules on instruction alignment. Hence, multi-byte no-ops are added.

The notation nop (X) denotes a series of no-op instructions occupying X bytes.

• The je on line 10 of the rewrite jumps to the .exit label when %edx is 0 after

the shift operation.

In the target there are two basic blocks, sequences of straight-line code delimited by

labels and jumps: lines 1-10 (1t); and line 11 (2t). In the rewrite, there are four: line

1-4 (1r); lines 5-10 (2r); lines 11-14 (3r); and the exit on lines 16-17 (4r). A path

through the program is a sequence of basic blocks that may be exercised by some

input.

The rewrite code is almost correct, except that it computes the wrong jump

condition. On line 9, it shifts the register %edx to the right by one, and branches if

the result is zero. However, the target simply checks if %edx is zero; the rewrite is

incorrect when the value of %edx is exactly one. In practice, if a wide string contains

the character 0x00000001, then the target performs the entire copy, but the rewrite

stops early.

STOKE uses a cost function to guide it toward correct rewrites. To evaluate

a rewrite, it runs it on inputs provided by the user. In previous work, if none of

the user-provided inputs contains the character 0x00000001 (which is rarely used in

practice) the search will not be guided away from this rewrite. This example is a

realistic case where search, even guided by a robust collection of test cases, may still

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 36

propose incorrect rewrites. We run the bounded verifier on rewrites that pass all test

cases. When the bounded verification succeeds, the search continues; when it fails,

we use the new counterexample as a test case which will guide the search away from

the incorrect rewrite.

4.2.1 Bounded Verifier

The bounded verifier operates on this example as follows. For a given bound k, we

enumerate the set of all possible paths through the target f and the rewrite g where

no basic block repeats more than k times. For k = 1, there is only one path for each:

p1 = 1t2t and q1 = 1r2r4r. For k = 2, we have p2 = 1t1t2t and q2 = 1r2r3r2r4r, in

addition to p1 and q1.

For each target path p and rewrite path q, the bounded verifier checks if there is

any input x for which the target executes path p, the rewrite executes path q, and the

outputs of the two programs differ. In this case, the outputs are the return register

%rax and the heap contents. If the two paths are infeasible, meaning there is no input

x for which f executes p and g executes q, then the check is vacuously true. The

bounded verifier builds a collection of constraints that express, as logical formulas,

the relationships between the input x and the outputs of each program. Informally,

we construct functions fp(x) and fq(x) representing the outputs of executing paths

p and q on an input x. Path conditions gp(x) and gq(x) are predicates that express

if paths p and q are taken on input x. Then, we use the Z3 SMT solver [21] to check

if x exists such that gp(x) ∧ gq(x) ∧ fp(x) 6= fq(x). If such an x exists, then we have

generated a counterexample which can be used as a new test case for the search.

Otherwise, f and g are equivalent for all inputs that execute paths p and q.

For k = 1 the bounded verification succeeds because the two programs are equiv-

alent for the empty string. For k = 2, the bounded verifier checks equivalence for all

runs executing the loops up to two times. When it compares p2 to q1, it produces a

counterexample: for the input string with two 4-byte characters, the first one hav-

ing value 0x00000001 and the second being a null character, the target and rewrite

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 37

differ, as described earlier. This counterexample is then used as a new test case.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 38

4.3 Implementation

This section describes the implementation of the bounded verifier, the alias relation-

ship mining procedure, and the sound verifier.

4.3.1 Bounded Verifier

The bounded verifier takes a target f and a rewrite g and proves equivalence over a

finite set of paths specified by a user-provided bound k. We generate sets of paths

PathT and PathR through the target and the rewrite such that no basic block is

repeated more than k times. For each p ∈ PathT , q ∈ PathR, we check that p and q

are equivalent for all inputs that execute these two paths.

More formally, let x denote a state, a collection of sixteen 64-bit bitvectors (one for

each general purpose register) and five boolean variables (one for each x86-64 flag).

Memory is modeled via the alias relationship mining technique described in Chapter 3

or as an array using the flat memory model (Section 2.6). For each instruction s in our

supported subset of the x86-64 instruction set, we have a function σs that describes

the semantics of executing s on a state x [32]. Suppose path p executes instructions

sf1 , . . . , s
f
m through the target and path q executes instructions sg1, . . . , s

g
n through

the rewrite. Let x0, . . . , xm and y0, . . . , yn denote the machine states as p and q are

executed, and let xf and yf denote the final states. Then we generate the constraint

C ≡ C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6, where:

C1 ≡ x0 = y0 constrains the input states to be equal. C2 represents the execution

of the target through p, i.e.,

C2 ≡ xf = xm ∧
m∧
i=1

xi = σsfi
(xi−1)

C3 represents the execution of the rewrite through q:

C3 ≡ yf = yn ∧
n∧
i=1

yi = σsgi (yi−1)

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 39

C4 encodes path conditions; if sfi is a conditional jump jf .L (jump to .L if flag

f is set) and the basic block following this instruction in p is labeled by .L then

we generate a constraint asserting that f is set at xi−1. Otherwise, we assert that

f is unset at xi−1. We do the same for the path q through g and conjoin all of

these constraints. C5 ≡ xf 6= yf encodes that the output states of p and q differ

on the output registers or the final heap state. C6 is a conjunction of constraints

that bound the address a of each memory dereference between 16 ≤ a ≤ 264 − 16.

Counter-examples with very small and very large addresses are generally invalid.

We pass C to the Z3 SMT solver. A model for x0 can be used as a test case

demonstrating that the target and rewrite differ. If C is unsatisfiable, then the

equivalence over p and q is proved and the bounded verifier analyzes the next pair

of paths.

4.3.2 Sound Validation

Our sound verifier uses a strict definition of equivalence that is sensitive to termi-

nation, exceptions and memory side-effects. Let O be a set of output registers, and

consider any program state x. We say that f is equivalent to g if, when we run f

and g on x, exactly one of the following holds:

1. the target and rewrite both loop forever;

2. the target and rewrite both trigger a hardware exception;

3. the target and rewrite both execute to completion and terminate normally and

the final states agree on output registers in O and all memory locations.

To perform sound verification, we extend previous work on data-driven equiv-

alence checking (DDEC) [59], which uses test cases to guess a simulation relation

between the target and the rewrite. An SMT solver is used to check the correctness

of the simulation relation. If verified, the proof is complete.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 40

The simulation relation is composed of cutpoints and invariants. A cutpoint is

a pair of corresponding program points in the target and rewrite. Each cutpoint

λ has an associated invariant ψλ that describes the relationship between states of

the target and rewrite at λ. Our goal is to prove inductiveness ; whenever we begin

executing the target and rewrite from cutpoint λ on states x and y satisfying ψλ,

the execution of the target and rewrite will both reach the same next cutpoint λ′ in

states x′ and y′ satisfying ψλ′ .

We make the following improvements to the DDEC algorithm:

• When checking the inductiveness of the simulation relation using an SMT

solver, DDEC enumerates all possible aliasing configurations, which is pro-

hibitively expensive. We use alias relationship mining (see Chapter 3) to dra-

matically improve the efficiency of this step.

• DDEC can lose precision because it does not support disjunctive or inequality

invariants, and its invariants never reason over memory. We add support for

register-register inequalities, a restricted set of disjunctions, and invariants that

assert a memory location is null. The additional precision is necessary to reason

about branch conditions. DDEC had not previously been demonstrated on

complete functions with multiple loops and branches.

• In some cases, invariants we learn from data are spurious. In [59] this would

cause DDEC to fail. In this work, we have added fixedpoint iterations to

eliminate spurious invariants, as in Houdini [27].

Choosing Cutpoints

The choice of cutpoints illustrates the correspondence between target and rewrite

data that we use to learn an invariant. We use three types of cutpoints in the

DDEC algorithm:

• a unique entry cutpoint at the entry to the program;

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 41

• a unique exit cutpoint at the exit of the program; and

• at least one loop cutpoint in every loop.

We model each program as having only one exit block, and transform every

return statement as a jump to this block. To identify appropriate loop cutpoints,

we perform a brute force enumeration of sets of pairs of program points. A set of

cutpoints is valid if it satisfies four conditions: First, when the target and rewrite are

executed on input x, they must reach the same cutpoints in the same order. Second,

at each cutpoint, the heap-state of the target must agree with the heap-state of the

rewrite. Third, there must be at least one cutpoint per loop. Finally, we only allow

program points at the end of basic blocks to be cutpoints; this decision simplifies the

implementation and makes the space of cutpoints to search smaller.

In some cases, DDEC fails with one set of cutpoints but succeeds with another.

Therefore, if DDEC fails we run the algorithm again with a different cutpoint selec-

tion until all the possibilities are exhausted.

Learning Invariants

For each cutpoint λ, we guess a set of candidate invariants ψλ that relate the state of

the target to the state of the rewrite when λ is reached. Given data from test cases

(provided by the user or generated from counterexamples during search), we build a

set Sλ of reachable state pairs (xi, yi) at λ. The invariant learning algorithm has two

steps; first, we partition Sλ = S1
λ ∪ · · · ∪ S

p
λ based on control flow. Second, we learn

the strongest set of predicates in our language of invariants that hold over each Sjλ.

The partitioning is done based on control flow to derive useful disjunctive invari-

ants. Suppose that the target and rewrite both have a conditional jump at λ. Let

Ct
λ and Cr

λ denote predicates over states that express if the target (rewrite) takes

the conditional jump. Then, we derive four partitions of Sλ corresponding to the

different control flow outcomes for each state pair. Let C1
λ = Ct

λ∧Cr
λ, C

2
λ = Ct

λ∧Cr
λ,

C3
λ = Ct

λ ∧ Cr
λ and C4

λ = Ct
λ ∧ Cr

λ. Define partitions Sjλ = {(xi, yi) ∈ Sλ : Cj
λ(xi, yi)}.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 42

Invariant :=
∑n

i=1Airi = An+1

∣∣ r1 < r2
∣∣ r1 ≤ r2∣∣ r 6= 0

∣∣ ∗mem = 0
∣∣ r[64 : 32] = 0

Figure 4.4: Language of invariants used by DDEC algorithm. r is used to denote
a 32 or 64-bit general purpose register and A denotes a bitvector constant. ∗mem
denotes a memory dereference. r[64 : 32] denotes the top 32 bits of a 64-bit register.

If the target (or rewrite) does not have a conditional jump we merge the appropriate

partitions.

For each set Sjλ we learn the strongest set of invariants over pairs of states. These

invariants are of the form Cj
λ ⇒ θ, where the θ come from five classes of invari-

ants as illustrated in Figure 4.4: (i) 64-bit affine bitvector equalities over registers;

(ii) register-register inequalities; (iii) disequalities asserting a register is non-null;

(iv) equalities asserting memory is null; (v) assertions that the top 32-bits of a 64-bit

register are null.

Given Sjλ, we find the strongest set of invariants in the language that hold over

all state pairs. We use a dedicated algorithm for affine bitvector equalities, and

a standard algorithm for the remaining invariant classes. The bitvector equality

algorithm is as follows:

• Let L denote the set of live registers in the target and rewrite. Number these

registers 0, . . . , |L| − 1.

• Build matrix M of size |S| × |L|.

• Set Mij to the value of register j in state pair (xi, yi).

• Apply Gaussian elimination adapted to bitvector arithmetic [23] to find a basis

for all possible 64-bit affine equalities.

The other invariants can be learned from the test cases directly; for example, we

check if, for some column, the top 32-bits of a register are zero in all the rows of the

matrix; or, for each pair of registers r1, r2, if the relationship r1 < r2 always holds.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 43

For each θi we have learned from Sjλ, we add the invariant Cj
λ ⇒ θi to the candidate

invariant set ψλ. Additionally, at every λ we add an invariant asserting the target

and rewrite have identical heap states.

Inductiveness Check

We use the bounded verifier to perform the inductiveness checks soundly and effi-

ciently. The candidate invariant ψλ is a set of predicates of the form Cj
λ ⇒ θi. If some

Cj
λ ⇒ θi is not inductive then it is removed from ψλ and the process is repeated until

all remaining predicates are inductive. This process mimics the fixedpoint iterations

performed by Houdini [27]. The fixedpoint iterations help discard any predicates that

hold for the test cases but cannot be guaranteed to hold for all possible inputs. Af-

ter reaching the fixedpoint, if the invariant established at the program exit cutpoint

implies that the output states are equivalent, then we have successfully established

the equivalence of the target and the rewrite.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 44

4.4 STOKE for Google Native Client

The goal of STOKE’s search algorithm is to find a rewrite that obeys the NaCl rules

and produces the same outputs as the target on a given set of test cases. We extend

the STOKE superoptimizer for this purpose.

At a high level, STOKE search is parametrized by the following: a search space

of all possible rewrites, a cost function that uses test cases to identify preferable

rewrites, and a set of transformations that can be applied to transform one rewrite

in the search space to another. We run the search with a fixed number of iterations.

In each iteration, we generate a new rewrite and evaluate a cost function. Depending

on the cost, we either accept or reject the rewrite. For rewrites with lowest seen cost,

we run the bounded verifier; if the bounded verifier says the target is equivalent to

the rewrite, we add it to the output set of candidate rewrites.

To adapt STOKE for NaCl, we need to design an appropriate cost function to

guide the search and add transformations relevant for NaCl to the existing transfor-

mations used by STOKE. These are described in the following subsections.

4.4.1 Transformations

Optimizing NaCl code requires more aggressive transformations compared to the ones

described in previous works that use STOKE [53, 55, 59, 60]. In particular, previous

work made no changes to the control flow. In this work, we relax this constraint and

allow changes to jump instructions. We use opcode moves, local and global swaps,

and instruction moves as described in [59]. Additionally, we include the following

transformations:

1. Operand moves replace an operand of an instruction with a different one. This

move also allows for jump instructions to change their targets. E.g., jmpq .L1

can be transformed to jmpq .L42.

2. Rotate moves move an instruction to a different place in the program.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 45

3. Opcode width moves change an opcode and its operands to a similar instruction

that operates on a different bitwidth. E.g., 32-bit addl %eax, %ebx can be

transformed to 64-bit addq %rax, %rbx.

4. Delete moves remove an instruction entirely.

5. Add no-op moves insert an extra no-op into the program (?).

6. Replace no-op moves replace an instruction with a string of no-ops whose binary

representation has the same length as the original instruction (?).

7. Memory+Swap moves replace a memory operand and simultaneously swap the

preceding instruction with another one. (?)

A (?) denotes a transformation specific to NaCl. The Memory+Swap move is

necessary because NaCl requires that the index of a memory operand is computed

by the preceding instruction. Modifying either instruction alone is very likely to

break this relationship. Therefore, there is a need for a single transformation that

changes both simultaneously. The add and replace no-op moves help STOKE meet

the alignment requirements of NaCl code. These specialized transforms required only

227 lines of additional C++ code.

4.4.2 Cost Function

A cost function produces a score for each rewrite, where lower values are better, and

guides the search towards desirable rewrites. Our cost function is an aggregate of

three different scores; one score measures compliance with the NaCl rules, another is

for functional correctness and the last is for performance.

The NaCl score assigns a value of zero to well-formed NaCl code. To compute

the penalty of alignment violations, we compute the minimum number of no-op

bytes which must be added to or removed from the rewrite for it to follow the

alignment constraints. To this end, we use a dynamic programing algorithm. For an

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 46

n-instruction rewrite, we build an n×32 matrix M where Mij contains the minimum

number of no-ops to be inserted or removed to align the ith instruction to j bytes

beyond a 32-byte boundary while following all NaCl rules. The row Mi+1 can be

constructed from row Mi. The minimum value in row Mn is the alignment penalty.

We also add fixed penalties (of value 100) for each ill-formed memory accesses, or

the use of instructions unsupported by NaCl. We call the sum of these penalties the

nacl score.

For functional correctness, we follow previous work [53, 55]: we run the rewrite

on test cases and compare its outputs to those of the target on the same test cases.

The correctness score is the Hamming distance between these outputs. Finally, the

cost function includes a performance score. Previous work on STOKE uses a static

approximation of performance. We compute a more accurate performance score by

running the code in a sandbox on test cases and estimating the total runtime by

summing precomputed latencies of each executed instruction. This score is more

accurate because it is sensitive to the number of loop iterations. The precomputed

latencies come from running an instruction in isolation on one core.

For each rewrite, the total cost is a weighted sum of correctness, performance,

and nacl scores. For our benchmarks, we find the following function works well:

f =

γ ∗ correctness + nacl + performance nacl < δ

γ ∗ correctness + η ∗ nacl + performance nacl ≥ δ

We choose γ = 106, δ = 5, η = 25. We do not believe that the particular constants

are special; rather, a variety of different cost functions may work. We leave evaluating

different designs of cost functions for future work. The implementation of this cost

function required 434 lines of C++ code.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 47

4.5 Evaluation

We use 13 libc string functions from the newlib library shipped with Google Native

Client to evaluate our extensions to STOKE. We performed all experiments on

machines with two Intel Xenon E5-2667v2 3.3GHz processors and 256GB of RAM.

We evaluate our work in three categories. First, we demonstrate that we can

optimize these benchmarks and achieve formally verified NaCl code with a median

and average speedup of 25%. Then, we compare the baseline STOKE implementa-

tion with our new system that uses the bounded verifier. Finally, we compare the

performance of alias relationship mining (ARM) to the flat memory model.

4.5.1 Experimental Setup

Our goal is to improve the performance of each of the 13 libc string functions

and prove correctness of the optimized code. For each benchmark, we perform two

experiments: optimization and translation. In optimization mode, we initialize the

rewrite with the code shipped with NaCl and run STOKE to improve its performance

while maintaining compliance with the NaCl rules. In translation mode, the rewrite is

initialized with code that does not comply with NaCl rules, and STOKE transforms

it into well-formed NaCl code. For each benchmark, we assembled test cases from

randomly generated strings.

The initial rewrite for the translation mode experiments is gcc-4.9 code com-

piled for x86-64 with memory accesses systematically rewritten to follow NaCl rules

on memory accesses; every access is written as a load-effective-address instruction to

compute the sandboxed 32-bit pointer followed by a separate instruction that per-

forms the dereference. The transformation helps STOKE find a rewrite faster, but

it breaks correctness, degrades performance, and violates the alignment rules. How-

ever, starting here, STOKE is sometimes able to correctly translate such programs

to correct and efficient NaCl code.

For each benchmark, we ran the search up to 15 times for 200,000 iterations

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 48

each. We set a timeout of 6 hours on a single core per benchmark. This time

is split between running search iterations and performing bounded verification to

generate the candidate rewrites; summing across all benchmarks, about 2/3 of this

time is spent in search, and 1/3 in bounded verification. All bounded verification is

performed with a bound of k = 1. For each of the search runs, we run the sound

DDEC verifier with a timeout of one hour on each candidate rewrite, in order of best

expected performance, until we find one that verifies. Statistics on the benchmarks

are in Table 4.1.

Performance Results

The performance results are shown in Figure 4.5 and Table 4.1. The improvements

range from 0% (for wcsrchr) to 97% (for wcslen). The optimization and the trans-

lation results are incomparable. For some benchmarks, it is easier to optimize code

that meets NaCl rules, and for others it is easier to translate already optimized code

to valid NaCl code. However, the optimization experiment always succeeds (meaning

we find a verified rewrite expected to be faster), while for several benchmarks, the

translation experiment fails.

There were three common sources of optimizations. First, as seen in Section 4.2,

many of the functions shipped with NaCl include instructions such as movl %eax,

%eax; these do not perform any useful computation and their only purpose is to sat-

isfy the NaCl rules on memory sandboxing (this instruction zeros the top 32 bits of

the %rax register). STOKE is often able to use instructions, such as addl $4, %eax

that meet the sandboxing constraints and perform necessary computations. Signif-

icant speedups are obtained when this change results in removal of an instruction

inside a loop. This situation arises with the wcslen benchmark, where a speedup of

nearly 2x is achieved by removing a single unnecessary instruction. Second, execut-

ing no-op instructions consumes processor cycles, and STOKE is sometimes able to

move several no-op instructions outside of a loop to produce speedups. The original

code has no-ops because NaCl enforces alignment rules, and moreover Google’s NaCl

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 49

Benchmark
Target Best Best Search DDEC

LOC LOC Speedup Time (min) Time (min)
wcpcpy 40 13 48% 37 38
wcslen 43 47 97% 78 89
wmemset 47 47 0% 29 45
wcsnlen 94 51 2% 61 83
wmemcmp 91 77 47% 360 302
wcschr 87 28 2% 61 5
strxfrm 99 38 0% 81 414
wcscmp 108 29 47% 38 586
wmemchr 132 75 2% 67 30
wcscpy 35 40 25% 276 252
wcscat 89 90 26% 360 46
strcpy 70 63 30% 360 415
wcsrchr 178 178 0% 30 15

Table 4.1: Performance results for verified benchmarks. LOC shows how many lines
of assembly codes in the target program. “Best LOC” and “Best Speedup” show the
number of lines of code and the speedup for the best rewrite found. The search time
includes both search and bounded verifier queries for the optimization mode task.
The DDEC time shows the total time required to complete all sound verification
tasks in optimization mode.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 50

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

w
cp

cp
y

w
csle

n

w
m

e
m

se
t

w
csn

le
n

w
m

e
m

cm
p

w
csch

r

strx
frm

w
cscm

p

w
m

e
m

ch
r

w
cscp

y

w
csca

t

strcp
y

w
csrch

r

S
p
e
e
d
u
p
 o

v
e
r

N
a
ti

v
e
 C

lie
n
t

Optimization
Translation

Max Verified

Figure 4.5: Speedups by benchmark. For each benchmark, the speedup over the
original NaCl library is shown. The bars correspond to the optimization experiment,
the translation experiment, and the best rewrite we verified. The ‘optimization mode’
much more reliably produces a verifiable result, but ‘translation mode’ sometimes
offers significant improvements.

compiler is overly conservative: it aligns every jump to a 32-byte boundary instead

of only indirect jumps. Table 4.1 shows that even though code size was not measured

in the cost function, STOKE reduced the aggregate code size by about 30%. Third,

although gcc generally does well, STOKE sometimes improves register allocation

and instruction selection.

In the case of wcscmp, with a translation mode speedup of 47%, both removing

no-ops and improving the use of sandboxing instructions made the code much smaller

– 29 lines down from 108. In the target, the loop contained 40 instructions (mostly

no-ops), but the translation mode rewrite loop contains only 10. This reduction has

a significant impact at the architectural level; we believe this change allowed the

processor’s loop stream detector to optimize code execution.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 51

Verification Results

In optimization mode, STOKE always finds and verifies a rewrite for every bench-

mark. However, the translation mode benchmarks infrequently produced a verified

rewrite, for two reasons. First, the translation mode search starts with a program

that does not obey NaCl rules, and the search has to fix this discrepancy before it

can produce any rewrite. As a result, it may take much longer for the translation

mode experiment to find a first rewrite.

Second, the start program for translation mode is semantically different from the

target. We used gcc-4.9 with full 64-bit pointers, while the NaCl compiler uses

32-bit pointers. As a result, bitwidths for different instructions differed between the

target and the rewrite. In many cases, the search would produce rewrites that were

almost correct; they would be equivalent for all input strings of up to 2GB in size,

but would fail for larger strings. Often, an unsigned length was treated as a signed

value, and vice-versa. The bounded verifier could not guide the search in these cases

because it could only produce small test cases. However, the DDEC verifier rejects

such “almost correct” rewrites. Yet sometimes, the code generated by gcc-4.9 is

closer to a fast rewrite than the code generated than the NaCl compiler, and we

obtain strong performance results.

Figure 4.6 shows end-to-end results for search and verification, including the num-

ber of candidates from search, and the number of verification successes and failures.

The verification failures were for two reasons. In only one case, the verification timed

out on a correct rewrite; this instance is for wcpcpy in translation mode. For the

other 180 failures, the candidate rewrite was indeed not equivalent; this problem was

particularly frequent for translation mode benchmarks as described in the previous

paragraph. In 20 of these 180 cases, the rewrite was both incorrect and the solver

timed out. It is to be expected that incorrect rewrites are more likely to cause a

timeout because the modified DDEC algorithm will continue to search for more cut-

points until they have all been exhausted or time expires. Never did the verification

fail for a correct rewrite, suggesting our choice of cutpoints and loop invariants were

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 52

 0

 2

 4

 6

 8

 10

 12

 14

 16

w
cp

cp
y
-o

p
t

w
cp

cp
y
-tra

n
s

w
csle

n
-o

p
t

w
csle

n
-tra

n
s

w
m

e
m

se
t-o

p
t

w
m

e
m

se
t-tra

n
s

w
csn

le
n
-o

p
t

w
csn

le
n
-tra

n
s

w
m

e
m

cm
p
-o

p
t

w
m

e
m

cm
p
-tra

n
s

w
csch

r-o
p
t

w
csch

r-tra
n
s

strx
frm

-o
p
t

strx
frm

-tra
n
s

w
cscm

p
-o

p
t

w
cscm

p
-tra

n
s

w
m

e
m

ch
r-o

p
t

w
m

e
m

ch
r-tra

n
s

w
cscp

y
-o

p
t

w
cscp

y
-tra

n
s

w
csca

t-o
p
t

w
csca

t-tra
n
s

strcp
y
-o

p
t

strcp
y
-tra

n
s

w
csrch

r-o
p
t

w
csrch

r-tra
n
s

N
u
m

b
e
r

S
u
cc

e
ss

fu
l
R

u
n
s

Success
Fail

(a) Alias Relationship Mining

 0

 2

 4

 6

 8

 10

 12

 14

 16

w
cp

cp
y
-o

p
t

w
cp

cp
y
-tra

n
s

w
csle

n
-o

p
t

w
csle

n
-tra

n
s

w
m

e
m

se
t-o

p
t

w
m

e
m

se
t-tra

n
s

w
csn

le
n
-o

p
t

w
csn

le
n
-tra

n
s

w
m

e
m

cm
p
-o

p
t

w
m

e
m

cm
p
-tra

n
s

w
csch

r-o
p
t

w
csch

r-tra
n
s

strx
frm

-o
p
t

strx
frm

-tra
n
s

w
cscm

p
-o

p
t

w
cscm

p
-tra

n
s

w
m

e
m

ch
r-o

p
t

w
m

e
m

ch
r-tra

n
s

w
cscp

y
-o

p
t

w
cscp

y
-tra

n
s

w
csca

t-o
p
t

w
csca

t-tra
n
s

strcp
y
-o

p
t

strcp
y
-tra

n
s

w
csrch

r-o
p
t

w
csrch

r-tra
n
s

N
u
m

b
e
r

S
u
cc

e
ss

fu
l
R

u
n
s

Success
Fail

(b) Flat Memory Model

Figure 4.6: End-to-end search and verification success rates. For each benchmark,
the total height of the bar shows the number of candidate rewrites found during
search. We apply the sound verifier to each candidate. The “success” measure shows
how many verification tasks succeeded; the “fail” measure shows how many failed. In
optimization mode, we always find verified results with the ARM model, but not with
the flat memory model. Note that the memory model affects the search in addition
to the verification, because it impacts which counterexamples are generated.

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 53

Figure 4.7: Comparison of implementations. For each of four implementations, the
median and mean best speedups are plotted across the 13 benchmarks in translation
and optimization modes. The number of benchmarks where an improved result
was found (maximum is 26 considering optimization and translation mode), and the
number of candidate rewrites generated by the search is also shown; these last two
figures are plotted against a log scale. Using the bounded verifier to generate a
stream of candidate rewrites substantially improves the quality of the rewrites; using
ARM also improves the number and quality of verified rewrites.

sufficient.

One observes that the 180 cases where sound verification failed due to an incorrect

candidate rewrite contradicts the often-assumed “small scope hypothesis” [34, 47, 2].

This hypothesis says that if the program is correct for small inputs, then it is likely

correct for larger inputs too. This hypothesis fails for our domain of simple libc

string functions. Often the bugs are very subtle and only appear for large inputs;

without the sound validator, we are unlikely to find them.

4.5.2 Comparison to Baseline Implementation

We re-ran the experiment using our baseline implementation. The baseline imple-

mentation does not use the bounded verifier at all. Instead, the search runs for a

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 54

fixed number of iterations and returns the best rewrite that passes all the test cases.

Then, the sound verifier is used to check for correctness. We ran the experiment

once with the ARM memory model and once with the flat model.

With the baseline implementation and ARM memory model, we only obtain

results for four benchmarks in optimization mode, namely wcpcpy, wcscmp, wmemchr,

and strcpy, with corresponding speedups of 48%, 47%, 2%, and 0%. For the other

9 benchmarks, the search results could not be verified because they were incorrect.

Without the bounded validator, we only obtain an average speedup of 7%. Across

all 13 benchmarks, the bounded verifier implementation with ARM generates 168

verified rewrites of varying performance, but the baseline implementation with ARM

only generates 23.

The baseline does poorly for two reasons. First, there is no bounded verifier

to help guide the search. Second, the search only returns the rewrite with the best

performance estimate, and discards the potentially valuable intermediate results that

are more likely to be correct.

Figure 4.7 shows aggregate statistics for four different implementations: the base-

line and bounded verifier implementations, each run with the ARM and flat memory

models. The median and mean speedups are shown, along with the total number

of benchmarks with a verified result (counting both optimization and translation

mode), and the total number of verified rewrites found. Using a bounded validator

and ARM yields an 8.3x improvement on mean speedup over the baseline implemen-

tation with a flat memory model.

4.5.3 Memory Model Performance

Figure 4.6b shows success rates for search and verification when the flat memory

model is used instead of ARM. The wmemset benchmark is of particular interest.

Out of the 13 successful runs, the search generated 66 candidate rewrites. Of these,

49 invocations of DDEC timed out after 1 hour. The other 17 candidates failed to

verify because of errors in the rewrites. On the same set of 49 verification tasks that

CHAPTER 4. SOUND LOOP SUPEROPTIMIZATION FOR NACL 55

timed out, running DDEC with ARM succeeds, and each one finishes in under 6

minutes. Similarly, ARM succeeds on five of the translation mode benchmarks, but

the flat model only succeeds on three of these. In particular, the flat model times

out on the wcscmp benchmark while ARM succeeds; this benchmark also is the one

with the greatest performance improvement in translation mode.

Chapter 5

Semantic Program Alignment

56

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 57

5.1 Introduction

Program equivalence checking is commonly performed in two stages: the first stage

is to construct a product program for the two programs by aligning them, and the

second is proving a safety property, or invariant, of the resulting program [9, 68].

There is a trade-off between the effort put into each stage. For example, consider the

functions f and g in Figures 5.1a and 5.1b, where each function iterates over some

loop-free basic block. A simple product program for f and g is shown in Figure 5.1c,

where one program is run after the other; one may check the invariant that the

outputs of f and g are equal. However, this alignment provides no help in checking

equivalence, which requires completely summarizing the loops of f and g.

In some cases, a better alignment is to pair iterations of the loops of f and g,

as pictured in Figure 5.1d. This alignment sometimes facilitates an easier, inductive

proof of equivalence in which corresponding loop-free code fragments are shown to

preserve an invariant Inv for each loop iteration [59]. However, such syntactically

constructed alignments only work in simple cases where the loops of f and g execute

for the same number of iterations. This is not the case for several common loop

optimizations that alter syntactic structure, such as vectorization, loop unrolling,

and loop peeling. What is needed is a semantically guided alignment that relates

the two programs in a way that is designed to make the final proof of equivalence as

simple as possible.

We introduce a novel and robust technique for constructing product programs

driven by semantics, rather than syntax, that extends equivalence checking to real-

world benchmarks that are beyond the reach of prior work. Given two functions

f and g along with test cases provided by the user, we build a trace alignment,

which is a pairing of states in execution traces of f and g for each user-provided

test case. Constructing the trace alignment is guided by the selection of a weak

invariant, called an alignment predicate, that identifies pairs of machine states that

should be aligned. Only once we have identified a trace alignment based on semantic

properties of the programs do we lift the alignment back to the program syntax,

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 58

f() {

while (*)

A;

return a;

}

(a) Function f

g() {

while (*)

B;

return b;

}

(b) Function g

X() {

while (*)

A;

while (*)

B;

assert(a == b);

}

(c) Naive Composition

Y() {

while (*) {

assert(Inv);

A;

B; }

assert(a == b);

}

(d) Syntactic Composition

Figure 5.1: Two functions and two product programs. A and B are basic blocks and
share no variables.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 59

construct a product program, and learn invariants that we attempt to prove. This

approach to constructing the product program, wherein we first solve the problem

of semantically aligning the traces, is the novel contribution that allows us to verify

equivalence where techniques described in prior work are inapplicable.

Our goal is to perform black-box verification of optimizations performed by com-

pilers, superoptimizers, or by hand, without any foreknowledge of the transformations

applied or toolchains used. Therefore, we evaluate our technique directly on x86-64

assembly. Given two functions, our technique utilizes a set of user-provided test cases

to guess a set of candidate alignment predicates. For each alignment predicate, we

infer the trace alignment and attempt to construct a program alignment automaton

(PAA) that specifies a product program. We again use the test cases to learn the

invariants of the PAA. Finally, we use an SMT solver to check proof obligations that

establish the equivalence of the functions.

We demonstrate the ability to verify several types of loop optimizations, including

loop unrolling, loop peeling, vectorization, software pipelining, strength reduction,

loop-invariant code motion, register allocation and loop inversion, among others. We

evaluate our technique on 56 realistic loop benchmarks where compilers (gcc-4.9.2

and clang-3.4) automatically perform a number of these optimizations, at least

including vectorization. We further apply our technique to verify the correctness

of the hand-vectorized C implementation of the strlen function that ships with

GNU C Library (libc, version ≥ 2.10.1), and also show that our method can verify

benchmarks used to evaluate other state-of-the-art equivalence checkers.

In this chapter we offer the following contributions:

• A novel and robust approach for semantics-driven construction of product pro-

grams using alignment predicates and trace alignments.

• A set of 56 realistic x86-64 benchmarks for evaluating equivalence checking

techniques on optimizations that alter control flow, such as loop unrolling,

loop peeling and vectorization.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 60

• The first fully automatic black-box algorithm for proving the correctness of

vectorization optimizations as performed by modern compilers on x86-64.

• A demonstration of a useful, real-world application of our equivalence checking

technology to verify the correctness of a handwritten vectorized implementation

of the strlen function shipped in libc.

The rest of this chapter is structured as follows. First, we introduce our running

example (Section 5.2) before presenting the formalisms used in our work (Section 5.3).

Then follows our equivalence checking procedure (Section 5.4) and evaluation (Sec-

tion 5.5).

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 61

5.2 Example

Consider the pair of C programs in Figure 5.2. Each function is represented as

a control flow graph (CFG); the nodes are program points, and the edges are basic

blocks along with a guard predicate. These functions take as input two parameters:

array, which points to an array of 32-bit integers, and len, which specifies the

length of the array. Both functions flip the bits of each array element. Function

f (Figure 5.2a) iterates over each element in the array with a counter variable i,

while g (Figure 5.2b) illustrates a simple way to vectorize this code using a 64-bit

operation. In g, the loop body c′ (lines 8-10) flips the bits of two array elements.

Before the loop, there are two possibilities. If len is odd, block a′ (lines 3-5) executes

and flips the bits of the first array element. Otherwise, block b′ executes and leaves

the array untouched.

This example is representative of a number of challenges that naturally arise in

the presence of loop optimizations. For example, if the loop in g iterates n times,

then the loop in f iterates for either 2n or 2n + 1 iterations, depending on the

parity of len. Previous equivalence checking techniques handle situations where the

relationship between the number of iterations of f and g is static (e.g. if g iterates n

iterations then f iterates 2n iterations for all inputs). As a result, prior automated

equivalence checking approaches [17, 59, 8, 48, 25, 26] fail on this example.

Our technique requires as input a set of test cases τ1, . . . , τn. The test cases may,

for example, be generated randomly or by bounded model checking. We execute f

and g on each test case to obtain traces. Figure 5.3 shows traces for each program

with array initialized to address 0x100000 and len=5.

We begin by guessing an alignment predicate, ξ, over pairs of machine states from

f and g that will help us align traces of f and g when run on the same input. For this

example, consider the alignment predicate ξ = {array + 4i = array'}. Suppose ρ

and ρ′ are traces of f and g for a particular test case. We consider a machine state

σ from ρ and σ′ from ρ′. If the predicate ξ(σ, σ′) holds, we say the two traces are

aligned by ξ at that pair of states. Additionally, we consider ρ, ρ′ to be aligned at the

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 62

1 void f(int* array , uint len) {

2 for(uint i = 0; i < len; i++)

3 array[i] ^= 0x ffffffff;

4 }

q1 q2 q3
[true]

i := 0
a

[i < len]

array[i] ^= 0xffffffff;

i++;

b

[i ≥ len]c

(a) C source and CFG for the unoptimized program, f .

1 void g(int* array , uint len) {

2 if(len % 2 == 1) {

3 *array ^= 0x ffffffff;

4 array ++;

5 len --;

6 }

7 while(len) {

8 *((long*) array) ^= 0x ffffffff ffffffff ;

9 array += 2;

10 len -= 2;

11 }

12 }

q′1

q′2

q′3

[len % 2 == 1]

*array ^= 0xffffffff;

array++; len--;

a′

[len % 2 == 0]

b′

[len 6= 0]

((ulong)array) ^=

0xffffffffffffffff;

array+=2; len-=2;

c′

[len == 0]

d′

(b) C source and CFG for the vectorized program, g.

Figure 5.2: Functions f and g used in the example.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 63

index q ∆ i len array

0 q1 5 0x100000

1 q2 a 0 5 0x100000

2 q2 b 1 5 0x100000

3 q2 b 2 5 0x100000

4 q2 b 3 5 0x100000

5 q2 b 4 5 0x100000

6 q2 b 5 5 0x100000

7 q3 c 5 5 0x100000

index q′ ∆′ len' array'
0’ q′1 5 0x100000

1’ q′2 a′ 4 0x100004

2’ q′2 c′ 2 0x10000c

3’ q′2 c′ 0 0x100014

4’ q′3 d′ 0 0x100014

e00

e10
e21

e42
e63

e74

Figure 5.3: Execution traces of f and g for a particular input. Column q shows
the program point and column ∆ shows the last basic block executed. The edges
indicate pairs of states where the alignment predicate array + 4i = array' holds.

beginning and at the end, even if ξ does not hold. In Figure 5.3 we have drawn edges

between every pair of states in the two traces that are aligned by ξ. Observe that

the alignment may pair states in a many-to-many correspondence, and that edges

may cross. A trace alignment by ξ is obtained by performing this procedure for a

set of test cases.

The trace alignment gives pairs of corresponding paths that relate the behavior

of f with g as follows. Consider any two edges ei, ej in Figure 5.3 that do not cross

each other and have no edges in between them (e.g. e10 is “between” e00 and e21,

while e64 and e73 cross each other). Each of ei, ej is associated with a machine state

in the execution trace of f . These two machine states delimit some series of basic

blocks, called a path, in f . Similarly, ei and ej delimit a corresponding path in g.

For example, consider edges e21 and e42. Between index 2 and index 4 of the trace

of f , the path bb is executed, while between index 1’ and 2’ of the trace of g, block

c′ is executed. Thus, bb and c′ are corresponding paths. Table 5.1 lists some of these

pairs of edges and the corresponding paths.

We use the corresponding paths to build a program alignment automaton (PAA)

that (we hope) overapproximates the behaviors of both programs. The PAA has

one node for each pair of program points. For each pair of corresponding paths in

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 64

Edges States P Q

e00 → e10 q1q
′
1 → q2q

′
1 a ε

e10 → e21 q2q
′
1 → q2q

′
2 b a′

e21 → e42 q2q
′
2 → q2q

′
2 bb c′

e42 → e63 q2q
′
2 → q2q

′
2 bb c′

e63 → e64 q2q
′
2 → q2q

′
3 ε d′

e63 → e73 q2q
′
2 → q3q

′
2 c ε

e64 → e74 q2q
′
3 → q3q

′
3 c ε

e73 → e74 q3q
′
2 → q3q

′
3 ε d′

Table 5.1: Pairs of edges and corresponding paths.

q1q
′
1 q2q

′
2 q3q

′
3

[len > 0 ∧
len' % 2 == 1]

ab; a′

[len' % 2 == 0]

a; b′

[i < len ∧
len' 6= 0]

bb; c′
[i ≥ len ∧
len' == 0]

c; d′

Figure 5.4: Simplified program alignment automaton for the example. The colors
show the correspondence between the transitions and the pairs of corresponding
paths in Table 5.1.

each pair of traces, we add a transition to the PAA labeled by these two paths.

We perform a greedy simplification procedure to remove redundant nodes and edges

(see Section 5.4.2). For the example, we remove the nodes q2q
′
1, q2q

′
3 and q3q

′
2, and

concatenate their incoming and outgoing transitions (so transitions q1q
′
1 → q2q

′
1 and

transitions q2q
′
1 → q2q

′
2 are replaced by transitions q1q

′
1 → q2q

′
2). Note that different

alignment predicates will define very different PAAs.

Figure 5.4 shows the simplified PAA for the example, which characterizes all the

program behaviors. The three nodes are the natural outcome of the construction

after simplification. This is in contrast to prior work such as [14, 59, 17] where cor-

responding points in the two programs, sometimes called cutpoints, must be chosen

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 65

based on less information; usually cutpoints are chosen syntactically. Our construc-

tion guarantees that ξ holds in all nodes of the PAA (except possibly the entry and

exit nodes) for all the traces generated by the test cases.

In Figure 5.4, there are two transitions between q1q
′
1 and q2q

′
2; one is for inputs

where len is odd, and a′ is executed in g. The other is for inputs where len is

even, and b′ is executed in g instead (this transition comes from corresponding paths

of aligned traces where the starting value for len is even). The paths labeling the

transitions show that b is executed in f an extra time if a′ is executed. Each path P

has a path condition ψP , which is the conjunction of the predicates on its basic blocks.

Each transition λ labeled by paths P,Q has a path condition given by ψλ = ψP ∧ψQ,

as shown in Figure 5.4.

Our next goal is to learn an invariant φs at every node s in the PAA and then

prove that the PAA soundly overapproximates both programs. At the start node,

we fix the invariant to assert equality of the input registers and the initial heaps. At

the exit, we assert equality of the output registers and the final heaps. The other

invariants are learned using the execution traces from the test cases provided by the

user (Section 5.4.4). A subset of the learned invariants for the example is shown in

Figure 5.5.

The choice of alignment predicate is crucial to finding invariants. For example,

suppose that our alignment predicate depicted in Figure 5.3 also paired state 3

of f ’s trace with state 1’ of g’s trace. After simplification, there is a transition

q1q
′
1 → q2q

′
2 labeled by abb; a′. Consequently, none of the invariants for q2q

′
2 depicted

in Figure 5.5 would hold. Instead, to prove equivalence one would need a set of

disjunctive invariants to reason about two cases: either f is one iteration ahead of g,

or it is not (depending on whether the transition labeled abb; a′ is taken). A similar

problem arises if one labels a transition a; a′ instead of ab; a′, as is the case in works

such as [59, 8], where loop iterations are assumed to be in one-to-one correspondence.

To prove the equivalence of the two programs, there are two primary types of proof

obligations we must check (see Section 5.3.1). First, we check that the invariants

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 66

φq1q′1 := array = array′ ∧ len = len′ ∧ ω = ω′

φq2q′2 := array′ − 4i = array ∧ len− i = len′ ∧
i ≤ len ∧ ω = ω′

φq3q′3 := ω = ω′

Figure 5.5: Invariants needed for the example. ω and ω′ denote heap states of f and
g. The alignment also allows us to show that len′ ≡ 0 (mod 2) at q2q

′
2, although this

fact is unneeded.

hold. For each transition s → t, with paths P and Q, we verify the following: if a

pair of machine states satisfies φs, then if paths P and Q are executed, the execution

terminates without error in states satisfying φt.

Second, we must ensure that the PAA has the necessary transitions to overap-

proximate all program behaviors. Each node s corresponds to a pair of program

points (qi, q
′
j). We want to ensure that every pair of feasible execution paths starting

at qi and q′j is represented in the automaton. Consider the node q2q
′
2. From node q2

there are two kinds of executions: (α), those for which i ≥ len and execution halts;

and (β), those for which i < len and execution continues. From q′2 there are similarly

two kinds of executions: (γ), those for which len′ = 0 and execution halts; and (δ),

those for which len′ 6= 0 and execution continues. Thus there are four pairs of pos-

sible behaviors: αγ, αδ, βγ and βδ. Of these, αγ and βδ are already represented in

the PAA via the self-loop at q2q
′
2 and the transition q2q

′
2 → q3q

′
3. For the other two,

we need to show they are infeasible. Now, αδ only executes if i ≥ len and len′ 6= 0,

however i ≥ len∧ len′ 6= 0∧φq2q′2 is unsatisfiable. Similarly i < len∧ len′ = 0∧φq2q′2
is also unsatisfiable, so βγ is infeasible.

Verifying these proof obligations is sufficient to conclude that these two programs

are equivalent for all inputs.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 67

5.3 Formalization

We say that two x86-64 functions, f and g, are equivalent if, when run starting in

identical machine states (registers, stack, heap), one of the following holds:

1. both terminate normally, with identical heap-state and identical output regis-

ters; or

2. each program either encounters a run-time error or loops forever.

We use σ to denote a machine state, including the program counter, and all

register, stack and heap values. We use ω to denote just the heap. When we use x

to denote a state element of f , we use x′ to denote the corresponding state element

of g. A trace, ρ, is a sequence of machine states.

We use relational Hoare triples [10, 33] to express proof obligations. Let φ1, φ2

be predicates on pairs of machine states from f and g, and let P (resp. Q) be a path

through f (resp. g). Then {φ1} P ; Q {φ2} denotes the statement: if φ1(σ, σ
′) holds

for states σ, σ′ of f, g and paths P,Q are executed (implying the path conditions

hold), then execution terminates normally in states σ′′, σ′′′ where φ2(σ
′′, σ′′′) holds.

A PAA is an automaton where each node s is labeled with a pair of program

points, one from f and one from g, along with an invariant φs. We assume that f

and g each have unique entry and exit program points. The start node of the PAA

corresponds to the pair of program entries, and the unique final node corresponds to

the pair of exit points. Each transition is labeled by a finite path in each program:

a transition (u, u′)→ (v, v′) must be labeled with a path P in f from u to v, and a

path Q in g from u′ to v′, where either P or Q must be nonempty. The PAA can

be thought of as a control flow graph for the product program, although we do not

explicitly build the product program in our work.

5.3.1 Proof Obligations for Program Alignment Automata

To use a PAA to check program equivalence, the following properties must be verified:

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 68

1. For each transition s→ t labeled with paths P,Q, it holds that {φs} P ; Q {φt}.

2. For each node s = (u, u′), all pairs of program paths through f and g starting

from u and u′ not included in the PAA must be infeasible. That is, if P and

Q are paths through f and g starting at u and u′, and there is no transition

s→ t labeled by P ∗, Q∗ where P ∗ is a prefix of P and Q∗ is a prefix of Q, then

{φs} P ; Q {false}.

3. The PAA has no cycles of transitions where all the paths through f or g are

empty.

4. The invariant of the final node implies that the heap states and output registers

are equal.

The alignment predicate, and the trace alignment derived therefrom, play the

critical role of selecting the right transitions for the PAA so that we can prove the

invariants at each node. The following lemma illustrates the key inductive argument

for a proof of equivalence, and the corollary establishes soundness.

Lemma 1. Let A be a program alignment automaton where the above proof obli-

gations have been checked. Suppose f and g are executed from states σ, σ′ at the

program points (u, u′), and there is a node s = (u, u′) of A where φs(σ, σ
′) holds.

Then if f executes to completion without exceptions within m steps (each step is an

execution of a basic block), g also executes to completion without exceptions, and

their final states satisfy the invariant of the final node of A.

Proof. By strong induction on m. When m = 0, the premises imply that f and g

have already executed to completion and the conclusion holds. Suppose the lemma

holds for 0 ≤ i < m. Assume f and g are executed from (u, u′) and that f terminates

within m steps. By proof obligation 2, some prefix of the execution traces of f and

g must match the paths P,Q of some transition λ : s → t in A. Removing these

prefixes from the execution traces, we now have a new pair of traces where f and

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 69

g execute from t with states σ′′, σ′′′ that satisfy φt (by proof obligation 1). In the

case where P is non-empty, f still executes to completion, but now within j < m

steps. By the inductive hypothesis, we can conclude the lemma holds. In the case

where P = ε, we repeat the step of identifying a matching transition and removing

the trace k times, where k is the length of the longest series of transitions from s

where the paths for f are empty; by proof obligation 3, k must be defined. Then

proceed as before.

Corollary 2 (Soundness). If there exists a program alignment automaton, A, for

f, g where the proof obligations hold, then f and g are equivalent.

Proof. Suppose we run f, g on an input. By Lemma 1 if f terminates without error

then g does also; by swapping f and g the converse also holds. The lemma also

implies the final invariant of A holds, and by the fourth proof obligation f and g are

equivalent.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 70

function verify(f, g, data)
(dtrain, dtest)← Partition(data)
AP ← GuessAlignmentPredicates(f, g, dtrain)
for all ξ ∈ AP do

TA← BuildTraceAlignment(ξ, dtrain)
A← BuildPAA(TA)
if TestPAA(A, dtest) then

A← LearnInvariants(A, dtest ∪ dtrain)
if CheckProofObligations(A) then

return equivalent
end if

end if
end for
return unknown

end function

Figure 5.6: The equivalence checking algorithm.

5.4 Equivalence Checking Procedure

Figure 5.6 gives pseudocode for our algorithm. The user supplies two functions,

f and g, along with a set of test cases, data. The test cases are partitioned into

two sets, a training set and a test set. We invoke GuessAlignmentPredicates with

the training data to build a set of candidate alignment predicates (Section 5.4.6).

For each alignment predicate ξ we call BuildTraceAlignment to construct a trace

alignment, TA, over the training data (Section 5.4.1) and then use TA to construct

the PAA (Section 5.4.2). To ensure that the PAA is general and not overfitted to

the training data, we use the test data to check the viability of the PAA via TestPAA

(Section 5.4.3). Finally, we learn the invariants for the PAA (Section 5.4.4) and

check the proof obligations (Section 5.4.5).

5.4.1 Construction of the Trace Alignment

Given an alignment predicate ξ we construct a trace alignment. The trace alignment

TA is a set of pairs (ρ, ρ′) where ρ and ρ′ are prefixes of the traces of f and g for

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 71

some test case. We initialize TA to the empty set. For each training test case τ we

execute f and g to obtain traces ρτ = σ1σ2 · · ·σn and ρ′τ = σ′1σ
′
2 · · ·σ′m. For each

σi, σ
′
j we check ξ(σi, σ

′
j); when satisfied, we add the pair (σ1σ2 · · ·σi, σ′1σ′2 · · ·σ′j) to

TA. Figure 5.3 shows prefixes of traces that are aligned by ξ in the example.

5.4.2 Construction of the Program Alignment Automaton

We initialize the PAA with a node for every pair of program points in the two

programs. We consider pairs (ρ, ρ′) ∈ TA along with minimal ν, ν ′ such that

(ρν, ρ′ν ′) ∈ TA (e.g. for the trace alignment in Figure 5.3, we consider the pairs

shown in Table 5.1). For each such pair we add a transition (p, p′) → (q, q′) la-

beled by the paths of basic blocks taken by ν and ν ′, where (p, p′) is the last pair

of program points in ρ, ρ′ and (q, q′) is the last pair of program points in ν, ν ′. As

an optimization, we consider only ν, ν ′ that are small, for example, fewer than 10

machine states in length.

The PAA can be regarded as a nondeterministic finite automaton (NFA) in the

following sense. A pair of traces ρ, ρ′ for f and g is accepted by the PAA if there is

a series of transitions (a run through the PAA) from the start node to the exit node

that correspond with ρ, ρ′ (i.e. concatenating the labels of the transitions gives paths

that match paths taken by ρ and ρ′). The above construction ensures that every pair

of traces in the training set is accepted by the PAA (we say the PAA “accepts the

training set”).

After performing this construction, we simplify the PAA by removing nodes and

transitions while ensuring the PAA still accepts the training set. Removing nodes

makes finding provably correct invariants easier, and removing transitions decreases

the number of proof obligations. In our experiments, we find simplification reduces

the number of nodes by 3.9x and the number of edges by 3.7x. We perform the

following two operations until we reach a fixedpoint.

First, we remove every node s that does not have a self-loop other than the entry

and exit. Suppose s has incoming transitions r1 → s, . . . , rn → s and outgoing

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 72

q1q
′
1 q2q

′
2

q2q
′
1

a; ε b; a′
bbb; a′c′

bb; c′

(a) PAA before simplification.

q1q
′
1 q2q

′
2

ab; a′

abbb; a′c′

bb; c′

(b) After removing node q2q
′
1.

q1q
′
1 q2q

′
2

ab; a′
bb; c′

(c) After deleting the extra edge.

Figure 5.7: Example of simplification procedure.

transitions s→ t1, . . . , s→ tm. For each i, j-pair, replace the transitions ri → s and

s→ tj with a transition ri → tj, labeled with the concatenation of the paths of the

original two transitions.

Second, we remove extra transitions. If a transition λ : s → t is labeled with

paths P,Q and transition λ∗ : s→ u is labeled with paths P ∗, Q∗ where P is a prefix

of P ∗ and Q is a prefix of Q∗, then λ∗ is removed. Once we cannot remove any more

transitions or nodes, the PAA is simplified.

Figure 5.7a shows a hypothetical PAA for the example (Section 5.2). We can

remove node q2q
′
1 since it has no self loops. We combine the transition a; ε with

each of b; a′ and bbb; a′c′ to get two transitions q1q
′
1 → q2q

′
2, as shown in Figure 5.7b.

Because ab is a prefix of abbb and a′ is a prefix of a′c′, we can remove one more

transition to obtain the simplified PAA shown in Figure 5.7c.

5.4.3 Testing the Program Alignment Automaton

If the alignment predicate is chosen poorly, the PAA constructed in Section 5.4.2 may

be overfitted to the training data. As a worst case example, consider the alignment

predicate ξ = “false”. Traces will only be aligned by ξ at the beginning and the

end. Every new test case may add a new transition from the start node to the end

node labeled by the entire pair of traces. Thus, there is no limit on the number of

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 73

transitions (if the traces can be arbitrarily long) and such a PAA is not useful for

equivalence checking. A good alignment predicate, on the other hand, results in a

PAA to which no further transitions need to be added to accept additional test cases

— the PAA already captures all possible pairs of executions of the two programs.

We must verify that the PAA is such a sound overapproximation of the two programs

as part of equivalence checking (see Section 5.4.5), but we can eliminate many PAAs

earlier by testing. We use a separate test set of inputs for this purpose.

By construction, the PAA accepts the training set (Section 5.4.2), so we check

that the PAA also accepts the test set. This check is similar to the standard language

membership test for NFAs. If the PAA fails to accept the test set, then we reject the

PAA and try another alignment predicate.

5.4.4 Learning Invariants

Our goal is to learn invariants for each node of the PAA. We take a data-driven

approach and use the test cases to guess a conjunction of predicates for each node,

and later (Section 5.4.5), we discard the conjuncts that cannot be proven.

First, for each node s of the PAA, we need to identify a set of pairs of machine

states, Σs, over which to learn invariants. For the traces of each test case (from

either the test set or the training set), we consider every possible run of the PAA

and record the machine states at each transition. Given a test case τ , we run both

programs to obtain traces ρ, ρ′. Let ν, ν ′ be prefixes of ρ, ρ′ that execute paths P,Q.

Consider every sequence of transitions (if any) from the start node of the PAA such

that the concatenation of the labels of the transitions match P and Q. For each such

sequence of transitions that ends in node s, we add the pair (σ, σ′) to Σs where σ

and σ′ are the last machine states of ν and ν ′.

The language of invariants, shown in Figure 5.8, includes linear equalities, in-

equalities and equalities mod n. Inequalities are needed for reasoning about branch

conditions, and equalities mod n are needed to prove properties of warm-up and

cool-down loops in vectorized code. There are three different data-driven techniques

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 74

Inv →
∑

civi = c
∣∣ v1 − v2 ≤ c

∣∣ ± v ≤ c∣∣ m = v
∣∣ v1 − v2 ≡ c1 (mod c2)∣∣ v ≡ c1 (mod c2)

∣∣ ωS = ω′
S

Figure 5.8: The language of invariants. Each c represents a bitvector constant and
each m represents a memory location. v represents a register, a subregister, or a
stack-allocated memory location. ωS represents the heap excluding the set of memory
locations S.

for learning the conjuncts.

First, for inequalities, we sample a subset of the data and find all the inequalities

with the strongest bound possible. Then, we check if these inequalities hold over the

entire data set; the failing ones are discarded.

Second, we use techniques from linear algebra to find a space of all linear equalities

that hold over the data (see Section 2.3). We construct a matrix M over the ring

of 64-bit bitvectors Z264 containing program values, where row i corresponds to σi

and σ′i, and column j corresponds to a register or stack location. We use SageMath

version 7.5.1 [63] to compute the kernel K = kerM . Each vector in the generating

set for K corresponds to a linear equality that holds over all pairs (σi, σ
′
i). Performing

this computation over Z264 rather than Z is expensive, but necessary because some

equalities hold over Z264 that do not hold over Z (in past work [59, 14], the invariant

learning routine would miss some of these equalities). Therefore, we perform two

optimizations. First, we do a pre-pass in which we remove pairs of columns where

a linear relationship of the form c1v1 + c2v2 = 0 can be readily found. Second, we

only sample k = 25 rows of test data for the matrix. We test the learned invariants

against the rest of the data set; if the learned invariants do not hold, we sample up

to k more rows from among the failures and repeat.

Lastly, for the remaining classes of invariants, we learn the strongest possible

invariant over the entire data set. Here, no division between test and training data

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 75

is needed. We attempt to learn an equality mod n for every pair of program values.

For each pair v1, v2 we compute all differences di = v1 − v′2 for each σi, σ
′
i. We then

compute the greatest common divisor d of all di − dj. If d 6= 1, then we can find c

such that v1−v2 ≡ c (mod d). To learn an invariant of the form ωS = ω′
S
, we choose

a minimal set S for which the invariant holds on all test cases.

Invariants learned for the PAA in Figure 5.4 are shown in Figure 5.5.

5.4.5 Verifying Proof Obligations

We perform a Houdini-style [27] fixedpoint computation to reduce the set of learned

invariants to those that can be proven by induction. For each node s we have the

invariant φs = φ1
s ∧ · · · ∧ φns . For each transition λ : t → s labeled by paths P

and Q we attempt to prove {φt} P ; Q {φis} for 1 ≤ i ≤ n. If any conjunct does

not hold, we remove it from the invariant. We repeat this procedure until all the

proofs succeed. We then check the remaining proof obligations (Section 5.3.1), and

Corollary 2 implies equivalence.

Our implementation supports two ways to model the stack. The first models the

stack conservatively, where we assume that the stack pointer is an arbitrary address

that could alias with arbitrary data structures on the heap, and ensures that the two

functions behave identically. However, for verifying optimizations that transform

the stack, we also support assuming that stack locations do not alias with any heap

locations or pointers in input parameters. In these cases we also assume that stack

accesses of different sizes do not alias, so we model them using separate memory

stores [66].

5.4.6 Space of Alignment Predicates

In practice, we find there is a small space of predicates that almost always contains a

useful alignment predicate for pairs of equivalent x86-64 functions. Namely, choosing

a predicate of the form (c1v1−c2v2 = k)∧ω = ω′ is typically sufficient. Here, v1 and v2

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 76

are registers or stack-allocated locations in f and g. We restrict c1, c2 ∈ {1, 2, 4, 8, 16}
and k ∈ Z. Moreover, we only need to consider alignment predicates where either

c1 = 1 or c2 = 1. There are 16 registers, but we only need to consider registers whose

values are defined (as determined by a program analysis). Thus, the total number

of choices for c1, c2, v1 and v2 has a relatively small bound. For each of these, we

heuristically pick k by finding values seen for c1v1 − c2v2 across different states that

are in common across multiple pairs of traces. Performing this search is generally

quite fast, and we make no attempt to rank the alignment predicates heuristically or

try them in a particular order. If all the alignment predicates fail, we additionally

attempt to use predicates of the form c1v1− c2v2 = k, where the alignment predicate

does not constrain the heap states. We offer intuition for, and evaluate the utility

of, this space of alignment predicates in Section 5.5.5.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 77

5.5 Evaluation

In this section we seek to validate the following points:

• Our technique is able to verify the correctness of vectorization and other com-

plex loop transformations as performed by modern compilers on x86-64. (Sec-

tions 5.5.1 and 5.5.2)

• Our technique can verify optimizations that are beyond the scope of existing

automated black-box techniques. (Section 5.5.3)

• Our technique can verify equivalence checking benchmarks used to evaluate

other state-of-the-art tools. (Section 5.5.4)

• The search space of alignment predicates that we use is suitable for realistic

verification problems. (Section 5.5.5)

• Alias relationship mining is helpful for discharging proof obligations. (Sec-

tion 5.5.6)

We conclude with limitations in Section 5.5.7.

5.5.1 Experimental Setup

To evaluate our method, we construct a set of benchmarks for verifying vectorization

optimizations. We started with 156 functions from the Test Suite for Vectorizing

Compilers (TSVC), which was developed “to assess the vectorizing capabilities of

compilers” and ported to C in [41]. We removed five classes of functions from the

original TSVC set:

• Functions that could not be vectorized using -msse4.2 and -O3 with either

gcc 4.9.2 or clang 3.4. These functions are not interesting in our evaluation

because the loop structures are preserved. These functions should be easy for

both our technique and other state-of-the-art tools. (96 functions)

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 78

• Duplicate functions. Some TSVC functions were designed to check that a

compiler could perform an analysis to verify the safety of an optimization;

however, after successful vectorization, the generated x86-64 code matches

that of another function. (6 functions)

• Functions with method calls. Our implementation does not support method

invocations. (9 functions)

• Out-of-scope functions designed to test loop interchange. See Section 5.5.7. (6

functions)

• Functions with two-dimensional arrays or memory indirection. (11 functions)

The TSVC functions operate on statically-allocated, fixed-size global arrays of

floating point values. While our technique works as is on over 80% of the floating

point benchmarks (by using uninterpreted functions to model floating point opera-

tions), there are additional issues when learning invariants from floating point data

that are not addressed by existing invariant inference techniques. For example, there

are multiple binary representations for some floating point values, such as NaN. These

issues are orthogonal to our contributions; to separate the evaluation of our method

from the details of floating point semantics, we systematically replaced floating point

types with integer types. We constructed 256 test cases by creating machine states

containing input arrays of randomly-chosen bytes. This same set of test cases was

sufficient to obtain code coverage over all these benchmarks. We also added a param-

eter to each function to specify the array length. We added assumptions on the input

values to prevent pointers for different arrays from aliasing. Adding assumptions to

avoid undefined behavior is generally required for equivalence checking [18, 60].

We were left with 28 functions. Most iterate over one or more arrays (up to 5),

perform arithmetic, and update the arrays. Some process the array forwards, some

backwards, and some with a stride. Some have loop-carried dependencies, others do

not. One function, s176, features a doubly-nested loop. No combination of these

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 79

features hindered our ability to check equivalence. For each of the 28 functions we

attempted to prove that gcc -O1 code was equivalent to gcc -O3 code and to clang

-O3 code, resulting in a total of 56 benchmarks.

Sometimes, discharging a particular proof obligation takes a long time or times

out using one SMT solver, but finishes quickly with another solver. Thus, we use two

solvers, Z3 [21] (commit 7f6ef0b6) and CVC4-1.5 [6], with the theories of arrays and

bitvectors. Also, the encoding of constraints that represent memory accesses may

have a profound impact on solver performance. Therefore we implement two memory

models [66], a flat memory model, and one based on alias relationship mining (ARM,

see Chapter 3). The flat model encodes all memory accesses as a read or an update

to an array (with separate arrays for the stack, if needed). ARM uses data from test

cases to guess and prove relationships that ensure pointers do not alias; then the

constraints are encoded with minimal use of arrays [14]. We set a 30-minute timeout

for each proof obligation for each solver and memory model. We use the result of

whichever solver and memory model pair finishes first. We use the counterexamples

from the SMT solver to eliminate other proof obligations that are demonstrably false,

as in [30].

We used rigorously tested semantic models for x86-64 instructions developed by

hand [14] and synthesized automatically [32]. We model multiplications and floating

point operations using uninterpreted functions. We performed the construction of

the PAA for each benchmark using one core of an Intel Xeon E5-2667 CPU @ 3.3GHz

machine. We use a pool of preemptible cloud virtual machines to check the proof

obligations.

5.5.2 Results

A list of the benchmarks and the outcomes are shown in Table 5.2. We successfully

verified 55 of the 56 benchmarks. The one failure (s351-gcc) was due to a timeout.

In all other cases the proofs succeeded. The PAAs all had 3 or 4 nodes. The number

of edges varied from 4 to 254, with a median of 4 and an average of 9. The number

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 80

gcc -O1 gcc -O3 clang -O3

Benchmark LOC LOC Out LOC Out

s000 14 18 X 44 X
s1112 12 31 X 59 X
s112 14 55 X 24 XNV

s121 16 44 X 48 X
s1221 14 24 X 37 X
s122 17 108 XS 21 XNV

s1251 18 29 X 60 X
s127 22 82 X 31 X
s1281 21 30 X 66 X
s1351 12 17 X 51 X
s162 17 49 X 58 X
s173 17 56 X 70 XS

s176 29 99 XS 34 XNV

s2244 19 56 X 65 X
s243 25 30 XNV 68 X
s251 16 27 X 49 X
s3251 22 149 XS 26 XNV

s351 29 130 ×S 24 X
s452 22 27 X 25 X
s453 15 22 X 15 XNV

sum1d 15 28 X 45 X
vdotr 17 28 X 49 X
vpvpv 15 26 X 38 X
vpv 13 25 X 37 X
vpvts 14 30 XS 54 X
vpvtv 14 26 X 36 X
vtv 14 25 X 36 X
vtvtv 15 26 X 51 X

Table 5.2: Results for 56 vectorization benchmarks. X represents successful verifi-
cation and × represents a timeout. For six functions, only one compiler succeeds in
vectorization; these benchmarks are marked by NV. Benchmarks requiring assump-
tions about the stack are marked by S.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 81

of conjuncts in the invariants in the final PAA ranged from 374 to 1417, with a

median of 651. The median time to discharge all proof obligations was 45.0 CPU

hours; the minimum time was 2.5 CPU hours (s112-clang) and the maximum 1166

CPU hours (s351-clang). The end-to-end time for this benchmark using the cloud

was 4.6 hours. The cost for cloud instances was $0.01 per CPU hour, so the cost of

checking the proof obligations for this benchmark was $11.66 while a typical problem

cost just $0.45.

The most difficult benchmark, s351, includes a loop with five multiplications, five

additions, and ten memory dereferences in each iteration. The s351-gcc benchmark,

which encountered timeouts while checking proof obligations, included a 4-way vec-

torized loop with a fully-unrolled cool-down loop to handle the last four iterations.

It is likely that with more effort, our constraint generation procedure can be tuned

to discharge the problematic proof obligations more efficiently. While s351-clang

still used vector instructions, clang generated much simpler code than gcc. Still, the

s351-clang benchmark took the most CPU time of all the successful benchmarks.

5.5.3 GNU C Library strlen Case Study

Sometimes compilers are unable to vectorize performance-critical functions, and

so library developers perform the vectorization themselves. This is the case for the

strlen function in libc, which was most recently updated in May 2009 with the

release of version 2.10.1. There is a test in the libc test suite that runs both a ref-

erence implementation and the hand optimized one, and checks that the outputs are

equal. Instead of running the programs on some inputs, we can leverage test cases

to prove that the two implementations are equivalent for all inputs. We successfully

verified the correctness of the strlen function (shown in Figure 5.9a) originally re-

leased in 2.10.1, which still ships as of 2019 in version 2.29, against a simple reference

implementation (Figure 5.9b). The alignment predicate found asserts the equality of

the pointers into the string (ptr and p). The end-to-end verification time was only

3.3 minutes on a single CPU core.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 82

1 size_t strlen (char *str) {

2 char *ptr;

3 ulong *longword_ptr;

4 ulong longword , himagic , lomagic;

5

6 for (ptr = str; ((ulong) ptr & 7) != 0; ++ptr)

7 if (*ptr == ’\0’)

8 return ptr - str;

9

10 longword_ptr = (ulong *) ptr;

11 himagic = 0x8080808080808080L;

12 lomagic = 0x0101010101010101L;

13

14 for (;;)

15 {

16 longword = *longword_ptr ++;

17 if ((longword - lomagic) & ~longword & himagic)

18 {

19 char *cp = (char *)(longword_ptr - 1);

20 if (cp[0] == 0) return cp - str;

21 if (cp[1] == 0) return cp - str + 1;

22 if (cp[2] == 0) return cp - str + 2;

23 if (cp[3] == 0) return cp - str + 3;

24 if (cp[4] == 0) return cp - str + 4;

25 if (cp[5] == 0) return cp - str + 5;

26 if (cp[6] == 0) return cp - str + 6;

27 if (cp[7] == 0) return cp - str + 7;

28 }

29 }

30 }

(a) Vectorized strlen implementation (simplified). The main loop has eight different
branches to exit, and the warm-up loop has two. Compilation adds an extra branch that
skips the warm-up loop. The alignment predicate ensures that each of these paths is
mapped to the correct number of iterations in the reference implementation.

1 size_t strlen (char *s) {

2 char* p;

3 for(p = s; *p; ++p);

4 return p - s;

5 }

(b) Reference strlen implementation.

Figure 5.9: Two implementations of strlen.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 83

The vectorized code has two loops; the warm-up loop (lines 6-8) counts characters

one-by-one until the pointer reaches an 8-byte boundary or a null character. The

main loop (lines 14-29) reads 8 characters from the string at a time and uses clever

bit-manipulation techniques to check if any of the 8 characters are null. If so, the

code checks the remaining characters one-by-one and returns the length; otherwise,

the loop continues.

Thus, the code reads beyond the end of the string unless the string ends at an

8-byte boundary or the warm-up loop encounters the null terminator. This is safe on

x86-64 because memory permissions are set on a page-level granularity (usually 4kB

in size). If m is a memory address the process is allowed to read, so is 8bm/8c + 7.

While the optimized code can perform an out of bounds read, it never uses this value,

and the read does not trigger a page fault (assuming that the unoptimized code does

not fault). This example shows two programs that are provably equivalent, even

though they dereference a different set of memory locations.

In general, if the memory locations accessed by f are provably on the same pages

as those accessed by g, then f raises a page fault if and only if g does; but, if

the memory accesses are on different pages, no such guarantee exists. For the sake

of checking aggressive optimizations, we decided not to model page faults (we do,

however, check for final heap equality, which addresses most faults due to memory

writes). Thus {φ1} P ; Q {φ2} may hold, even if path P contains a memory access

but path Q does not. There is no guarantee that equivalent programs will access

memory pages in the same order; f could read and write a memory location in each

loop iteration, while g reads and writes the memory location once (Section 5.5.4 offers

one such example). Therefore, fully modeling page faults likely requires invariants

that track which memory locations each program has accessed.

We also discovered that the hand-optimized code was written conservatively.

When the guard of the if-statement on line 17 is satisfied, one of the eight return

statements is always taken. We can optimize the code by moving the cascade of

if-statements to the outside of the loop, and we proved this is sound.

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 84

To the best of our knowledge, no other black-box technique in the equivalence

checking, relational verification, or translation validation literature is able to au-

tomatically verify this example. There are two challenging aspects to highlight.

First, the number of iterations executed in the warm-up loop and main loops are

data-dependent; i.e., the number of iterations of the warm-up loop depends on the

alignment of the input string to an 8-byte boundary. Second, the PAA has a large

number of edges, and a naive search to build the PAA is too inefficient. Using an

alignment predicate makes the search tractable.

5.5.4 Comparison with Related Work

We believe techniques that depend on syntactic alignment of the two programs [59,

45, 48, 25, 26] fail on most or all of our benchmarks, including at least 47 benchmarks

where loop unrolling has been performed (usually as part of vectorization). In [8],

the authors suggest unrolling one loop and then attempting a syntactic alignment.

This approach does not support cool-down loops (present in 21 of our benchmarks)

or loop peeling optimizations (present in another 9 benchmarks). The technique

of [17] succeeds on benchmarks unrolled µ times, where µ is an unroll factor. The

cost of the technique is superexponential in µ in the worst case, and reported results

are only for µ = 1 [17, 30]. Among our benchmarks, 32 have been unrolled 4 times

and 15 have been unrolled 8 times. Finally, we believe ours is the only black box,

automated technique able to check equivalence for libc strlen (Section 5.5.3) and

our running example (Section 5.2).

A challenging equivalence checking problem is presented in [17]. As far as we

know, only our technique and the technique of [17] are able to handle this problem.

The benchmark consists of checking the correctness of a loop that sums the pos-

itive integers of an array after optimizations have been performed, including loop

inversion, a transformation of branch conditions, replacing a branch inside the loop

with a conditional move instruction, and register allocation. The unoptimized pro-

gram writes to a global heap variable on every iteration, while the optimized version

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 85

only writes the result once at the end of the loop. Their benchmark was for 32-bit

x86 rather than x86-64, but we found that compiling the C source on x86-64 with

gcc 4.9.2 using -O0 and -O1 produced the same control flow graphs and the same

optimizations; we believe that this modified benchmark is a suitable proxy for the

original.

We successfully verified this benchmark; the alignment predicate we found related

the stack-allocated pointer of the unoptimized program with an index counter in the

optimized one and did not relate heap states. The total time to guess the alignment

predicate, construct the PAA, learn invariants, and verify the proof obligations on a

single CPU core was 34.4 minutes. Most of the time was spent verifying the proof

obligations, which was done only using Z3 and only with the flat memory model.

The authors of [17] also demonstrate a large-scale evaluation of their technique

on whole binaries, but in whole programs many of the equivalence checks between

corresponding functions are easy (e.g. do not involve loop optimizations), and [17]

does not describe the harder equivalence checking problems. Since our contribution

is about equivalence checking of loops, our evaluation focuses on loops rather than

whole programs.

5.5.5 Search over Alignment Predicates

We performed an experiment to count the number of alignment predicates in the

search space for each benchmark, and the number of viable PAAs that we could

build (meaning the number of PAAs that accept the test set; see Section 5.4.3). For

each benchmark we tried between 182 and 3318 alignment predicates, with a median

of 1130. Between 0.37% and 22% of these alignment predicates led to viable PAAs.

Averaging across the benchmarks, 3.1% of alignment predicates succeeded. At least

8 viable PAAs were found per benchmark, with a maximum of 65 and a median of

28. These findings suggest that our space of alignment predicates is robust for our

set of benchmarks.

In practice the successful alignment predicates typically relate a pointer or counter

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 86

in f with a pointer or counter in g. This is the case in our example (Section 5.2),

where the alignment predicate matches the value of a pointer in f , namely array +

4i, with the pointer array' in g. When g processes 8 bytes of the array and the

pointer increases by 8, we find a corresponding path in f where 8 bytes are processed

and its pointer increases by 8. The powers of two in our alignment predicates arise

because counters are generally multiplied by powers of two to address array locations,

and not due to specifics of any optimizations performed on our benchmarks (e.g.

the number of loop iterations unrolled). Alternatively, for the example, we can use

equality of heap states as the alignment predicate to ensure that the memory writes of

f and g are aligned and obtain the same result. For benchmarks where heap equality

alone was a suitable alignment predicate, a large proportion of alignment predicates

worked. We also observe that some alignment predicates succeed in aligning one loop

an iteration (or k iterations) ahead of the other. We can check the proof obligations

for the resulting PAAs as long as the invariants are able to sufficiently relate the

program states despite this offset.

Since there are only a few ways to reference a memory location on x86-64, it

is unsurprising that even our simple alignment predicates suffice to identify corre-

sponding uses of pointers and counters between the two programs. For example, if

f accesses an array using a pointer in register r1, and g accesses an array of k-byte

elements using a base address b and counter register r2, then the alignment predicate

r1 = b+ k ∗ r2 would assert the equality of these two memory dereferences. Indeed,

this is in our space of alignment predicates.

While it did not arise in our benchmarks, we expect that some equivalence check-

ing problems will require the alignment predicate to assert an equality over three

or four registers. Four registers would be the maximum required to relate any two

pointer dereferences. We also expect that some benchmarks involving multiple loops

will require a disjunction over program points; for example, we may want to use

one alignment predicate for one loop, and another alignment predicate for another

loop. While one could extend our work to such problems by broadening the space

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 87

of alignment predicates and thus increasing search times, our observation that good

alignment predicates tend to relate pointers and counters suggests that these align-

ment predicates may be guessed directly from the program text. We leave this

question to future work.

5.5.6 Evaluation of Memory Models

As described in Chapter 3 of this thesis, alias relationship mining (ARM) is a tech-

nique that improves the reliability of discharging proof obligations with an SMT

solver in the presence of memory references.

In our experiments, we found that the majority of the benchmarks could be

discharged using only a single SMT solver and the flat memory model. Beyond

these, even more benchmarks can be discharged using the flat memory model along

with two SMT solvers running in parallel (once one finishes we stop the second).

However, among the benchmarks, there are a few for which ARM is truly required.

Moreover, the only way to discover which combination of solver and memory model

is most suited for a benchmark is to actually run the benchmark – hence we run the

different solver and memory model combinations in parallel.

Table 5.3 shows, for the s452-llvm benchmark, the number of proof obligations

that were successfully discharged using a 30-minute timeout with the four solver

and memory model pairs alone. Then, we show the number that may be discharged

using a single SMT solver (Z3 or CVC4), but trying both of the memory models in

parallel. We also do the opposite: choose a fixed memory model, then run both SMT

solvers in parallel, and see how many proof obligations can be discharged. Lastly,

we run all four solver and memory model combinations and count the number of

proof obligations which do not suffer timeouts. For this particular benchmark, we

see that CVC4 succeeded on all the problems that Z3 did, and that CVC4 alone

would be sufficient (while Z3 only succeeded on 78% of those CVC4 completed).

However, neither the flat memory model nor alias relationship mining with CVC4

were sufficient to discharge the proof obligations; the flat memory model succeeded

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 88

Z3 CVC4 Z3+CVC4

Flat 1399 1788 1788
ARM 1394 1796 1796
Flat+ARM 1399 1800 1800

Table 5.3: Number of proof obligations discharged by different solvers and memory
models for benchmark s452-llvm.

in checking 1788 of them, while ARM succeeded on 1796. However, there were 4

proof obligations for which the flat memory model succeeded where ARM failed;

both memory models are needed to verify all 1800 of the proof obligations. Using

CVC4 with ARM is nearly, but not quite, sufficient for this example. With more

engineering, all the obligations could likely be discharged using a single memory

model; even so, we expect that trying different combinations of solvers and memory

models will still be useful for challenging benchmarks.

5.5.7 Limitations

A main limitation of our work is that we cannot reason about transformations that

reorder an unbounded number of memory writes, for example, loop splitting, loop

fusion, loop interchange, and loop tiling optimizations. This is because the only

invariants we learn and prove over the heap states assert heap equality on all but a

finite set of memory locations. This limitation could be addressed by learning and

proving more general quantified invariants over heap states.

Another limitation arises when the correspondence between the control flow of

the two programs depends on an unbounded input. Consider the two functions in

Figure 5.10 where the loop of f has been flattened. Here, m iterations in f correspond

to 1 iteration in g. As far as we know, no equivalence checking techniques that

construct a product program or similar structures are able to verify this benchmark

as is (although those that summarize loops, like [20], may succeed). The reason is

that the product program needs to align the entire execution of the inner loop of f

CHAPTER 5. SEMANTIC PROGRAM ALIGNMENT 89

1 int f(uint n, uint m) {

2 int k = 0;

3 for(uint i = 0; i < n; ++i) {

4 for(uint j = 0; j < m; ++j) {

5 k++;

6 }

7 }

8 return k;

9 }

10 int g(uint n, uint m) {

11 int k = 0;

12 for(uint i = 0; i < n; ++i) {

13 k += m;

14 }

15 return k;

16 }

Figure 5.10: A difficult problem for equivalence checking via product programs.

with m iterations of the loop of g. To extend our approach to benchmarks like these,

we would need to summarize loops (in this case the inner loop of f) and check for

termination.

However, we confirmed our method can verify a modified version of this bench-

mark where other approaches using product programs likely fail. If the input value

m is constrained to a small finite set m ∈ {c1, c2, . . . , ck} while n is left unbounded,

then we can construct a PAA for the two programs and prove equivalence. The PAA

contains a node s with k transitions λi : s→ s where λi relates ci iterations of f to

1 iteration of g. In essence, the PAA we learn creates a disjunction of all the k cases

and we check each one. We can reason disjunctively because the path condition for

λi only holds when m = ci.

Chapter 6

Conclusion

90

CHAPTER 6. CONCLUSION 91

In this thesis, we described three contributions to the equivalence checking liter-

ature. First, in Chapter 3, we described how alias relationship mining may help dis-

charge proof obligations. In Chapter 4, we gave an application of equivalence check-

ing to loop superoptimization; we showed that a bounded validation technique, in

addition to a sound one, is necessary for successfully superoptimizing loops soundly.

Lastly, we described and evaluated a new technique – semantic program alignment

– which can be used to verify the correctness of aggressive compiler optimizations

that alter control flow.

Bibliography

[1] Chrome rewards. https://www.google.com/about/appsecurity/

chrome-rewards/. Accessed: Aug 2016.

[2] Andoni, A., Daniliuc, D., Khurshid, S., and Marinov, D. Evaluating

the “small scope hypothesis”. In Principles of Programming Languages (2002),

POPL ’02.

[3] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo: A transparent

dynamic optimization system. In Programming Language Design and Imple-

mentation (2000), PLDI ’00.

[4] Balakrishnan, G., and Reps, T. W. WYSINWYX: What you see is not

what you execute. ACM Transactions on Programming Languages and Systems

32, 6 (2010).

[5] Bao, W., Krishnamoorthy, S., Pouchet, L.-N., Rastello, F., and

Sadayappan, P. Polycheck: Dynamic verification of iteration space transfor-

mations on affine programs. In Principles of Programming Languages (2016),

POPL ’16, pp. 539–554.

[6] Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanovi’c,

D., King, T., Reynolds, A., and Tinelli, C. CVC4. In Computer Aided

Verification (2011), vol. 6806 of CAV ’11, pp. 171–177.

92

BIBLIOGRAPHY 93

[7] Barrett, C., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., and Zuck,

L. Tvoc: A translation validator for optimizing compilers. In Computer Aided

Verification (2005), CAV ’05.

[8] Barthe, G., Crespo, J. M., Gulwani, S., Kunz, C., and Marron, M.

From relational verification to SIMD loop synthesis. In Symposium on Principles

and Practice of Parallel Programming (2013), PPoPP ’13, pp. 123–134.

[9] Barthe, G., Crespo, J. M., and Kunz, C. Relational verification using

product programs. In International Conference on Formal Methods (2011), FM

’11, pp. 200–214.

[10] Benton, N. Simple relational correctness proofs for static analyses and pro-

gram transformations. In Principles of Programming Languages (2004), POPL

’04, pp. 14–25.

[11] Burstall, R. M. Some techniques for proving correctness of programs which

alter data structures. Machine Intelligence 7 (1972).

[12] Castro, M., Costa, M., Martin, J.-P., Peinado, M., Akritidis, P.,

Donnelly, A., Barham, P., and Black, R. Fast byte-granularity software

fault isolation. In Symposium on Operating Systems Principles (2009), SOSP

’09.

[13] Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin, N., Tye,

T., Yadavalli, S. B., and Yates, J. Fx! 32: A profile-directed binary

translator. IEEE Micro 18, 2 (1998).

[14] Churchill, B., Sharma, R., Bastien, J., and Aiken, A. Sound loop

superoptimization for google native client. In Architectural Support for Pro-

gramming Languages and Operating Systems (2017), ASPLOS ’17, pp. 313–326.

BIBLIOGRAPHY 94

[15] Csallner, C., Tillmann, N., and Smaragdakis, Y. Dysy: Dynamic sym-

bolic execution for invariant inference. In International Conference on Software

Engineering (2008), ICSE ’08, pp. 281–290.

[16] Currie, D., Feng, X., Fujita, M., Hu, A. J., Kwan, M., and Rajan,

S. Embedded software verification using symbolic execution and uninterpreted

functions. International Journal of Parallel Programming 32, 3 (2006).

[17] Dahiya, M., and Bansal, S. Black-box equivalence checking across compiler

optimizations. In Asian Symposium on Programing Languages and Systems

(2017), ASPLAS ’17, pp. 127–147.

[18] Dahiya, M., and Bansal, S. Modeling undefined behavior semantics for

checking equivalence across compiler optimizations. In Haifa Verification Con-

ference (2017), HVC ’17.

[19] De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M.

Relational verification through horn clause transformation. In International

Static Analysis Symposium (2016), SAS ’16, pp. 147–169.

[20] De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M.

Enhancing predicate pairing with abstraction for relational verification. arXiv

preprint arXiv:1709.04809 (2017).

[21] De Moura, L., and Bjørner, N. Z3: An efficient SMT solver. In Theory and

Practice of Software, Tools and Algorithms for the Construction and Analysis

of Systems (2008), TACAS ’08.

[22] Dutta, S., Sarkar, D., Rawat, A., and Singh, K. Validation of loop

parallelization and loop vectorization transformations. In Evaluation of Novel

Software Approaches to Software Engineering (2016), ENASE 2016, pp. 195–

202.

BIBLIOGRAPHY 95

[23] Elder, M., Lim, J., Sharma, T., Andersen, T., and Reps, T. Abstract

domains of affine relations. ACM Transactions on Programming Languages and

Systems 36, 4 (2014).

[24] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C.,

Tschantz, M. S., and Xiao, C. The Daikon system for dynamic detection

of likely invariants. Science of Computer Programming 69, 1–3 (2007).

[25] Fedyukovich, G., Gurfinkel, A., and Sharygina, N. Automated dis-

covery of simulation between programs. In Logic for Programming, Artificial

Intelligence, and Reasoning (2015), pp. 606–621.

[26] Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., and Ulbrich,

M. Automating regression verification. In Automated Software Engineering

(2014), ASE ’14, pp. 349–360.

[27] Flanagan, C., and Leino, K. R. M. Houdini: An annotation assistant for

ESC/Java. In Formal Methods Europe (2001), FME ’01, pp. 500–517.

[28] Friedberg, S. H., Insel, A. J., and Spence, L. E. Linear Algebra, fourth

edition ed. Pearson Education, Upper Saddle River, New Jersey, 2003.

[29] Gulwani, S., Jha, S., Tiwari, A., and Venkatesan, R. Synthesis of loop-

free programs. In Programming Language Design and Implementation, (PLDI)

(2011).

[30] Gupta, S., Saxena, A., Mahajan, A., and Bansal, S. Effective use

of SMT solvers for program equivalence checking through invariant-sketching

and query-decomposition. In Theory and Applications of Satisfiability Testing

(2018), SAT ’18.

[31] Hawblitzel, C., Lahiri, S. K., Pawar, K., Hashmi, H., Gokbulut, S.,

Fernando, L., Detlefs, D., and Wadsworth, S. Will you still compile me

BIBLIOGRAPHY 96

tomorrow? Static cross-version compiler validation. In Foundations of Software

Engineering (2013), ESEC/FSE ’13, pp. 191–201.

[32] Heule, S., Schkufza, E., Sharma, R., and Aiken, A. Stratified synthesis:

Automatically learning the x86-64 instruction set. In Programming Language

Design and Implementation (June 2016), PLDI ’16.

[33] Hoare, C. A. R. An axiomatic basis for computer programming. Communi-

cations of the ACM 12, 10 (Oct. 1969), 576–580.

[34] Jackson, D., and Damon, C. A. Elements of Style: Analyzing a software

design feature with a counterexample detector. In Software Testing and Analysis

(1996), ISSTA ’96.

[35] Joshi, R., Nelson, G., and Zhou, Y. Denali: A practical algorithm for

generating optimal code. ACM Transactions on Programming Languages and

Systems 28, 6 (2006).

[36] Kanade, A., Sanyal, A., and Khedker, U. P. A PVS based framework

for validating compiler optimizations. Fourth IEEE International Conference

on Software Engineering and Formal Methods (SEFM’06) (2006), 108–117.

[37] Kiefer, M., Klebanov, V., and Ulbrich, M. Relational program reason-

ing using compiler IR. In Working Conference on Verified Software: Theories,

Tools, and Experiments (2016), pp. 149–165.

[38] Kundu, S., Tatlock, Z., and Lerner, S. Proving optimizations correct

using parameterized program equivalence. In Programming Language Design

and Implementation (2009), PLDI ’09, pp. 327–337.

[39] Leroy, X. A formally verified compiler back-end. Journal of Automated Rea-

soning 43, 4 (2009).

BIBLIOGRAPHY 97

[40] Lopes, N. P., Menendez, D., Nagarakatte, S., and Regehr, J. Prov-

ably correct peephole optimizations with alive. In Programming Language De-

sign and Implementation (2015), PLDI ’15, pp. 22–32.

[41] Maleki, S., Gao, Y., Garzarán, M. J., Wong, T., and Padua, D. A.

An evaluation of vectorizing compilers. In Parallel Architectures and Compila-

tion Techniques (2011), PACT ’11, pp. 372–382.

[42] Mangpo, P., Thakur, A., Bodik, R., and Dhurjati, D. Scaling up

superoptimization. In Architectural Support for Programming Languages and

Operating Systems (2016), ASPLOS ’16.

[43] Mao, O., Chen, H., Zhou, D., Wang, X., Zeldovich, N., and

Kaashoek, M. F. Software fault isolation with API integrity and multi-

principal modules. In Symposium on Operating Systems Principles (2011),

SOSP ’11.

[44] Massalin, H. Superoptimizer: A look at the smallest program. In Architectual

Support for Programming Languages and Operating Systems (1987), ASPLOS

’87, pp. 122–126.

[45] Necula, G. C. Translation validation for an optimizing compiler. ACM Sigplan

Notices 35, 5 (2000).

[46] Nimmer, J. W., and Ernst, M. D. Static verification of dynamically de-

tected program invariants: Integrating Daikon and ESC/Java. Electronic Notes

in Theoretical Computer Science 55, 2 (2001), 255 – 276. Runtime Verification.

[47] Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., and Tom-

pits, H. On the small-scope hypothesis for testing answer-set programs. In

Principles of Knowledge Representation and Reasoning (2012).

[48] Partush, N., and Yahav, E. Abstract semantic differencing for numerical

programs. In Static Analysis Symposium (2013), SAS ’13, pp. 238–258.

BIBLIOGRAPHY 98

[49] Person, S., Dwyer, M. B., Elbaum, S. G., and Pasareanu, C. S.

Differential symbolic execution. In Foundations of Software Engineering (2008),

FSE ’08.

[50] Pnueli, A., Siegel, M., and Singerman, E. Translation validation. In

Tools and Algorithms for Construction and Analysis of Systems (1998), TACAS

’98, pp. 151–166.

[51] Ramos, D. A., and Engler, D. R. Practical, low-effort equivalence verifi-

cation of real code. In Computer Aided Verification (2011), CAV ’11.

[52] Rival, X. Symbolic transfer function-based approaches to certified compilation.

In Principles of Programing Languages (2004), POPL ’04, pp. 1–13.

[53] Schkufza, E., Sharma, R., and Aiken, A. Stochastic superoptimization.

SIGPLAN Not. 48, 4 (2013), 305–316.

[54] Schkufza, E., Sharma, R., and Aiken, A. Stochastic optimization of

floating-point programs with tunable precision. In Programming Language De-

sign and Implementation (2014), PLDI ’14.

[55] Schkufza, E., Sharma, R., and Aiken, A. Stochastic program optimiza-

tion. Communications of the ACM 59, 2 (Jan. 2016), 114–122.

[56] Sehr, D., Muth, R., Biffle, C. L., Khimenko, V., Pasko, E., Yee, B.,

Schimpf, K., and Chen, B. Adapting software fault isolation to contempo-

rary CPU architectures. In USENIX Security Symposium (2010).

[57] Sewell, T. A. L., Myreen, M. O., and Klein, G. Translation validation

for a verified OS kernel. In Programming Language Design and Implementation

(2013), PLDI ’13, pp. 471–482.

[58] Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., and

Nori, A. V. A data driven approach for algebraic loop invariants. In Program-

ming Languages and Systems (2013), pp. 574–592.

BIBLIOGRAPHY 99

[59] Sharma, R., Schkufza, E., Churchill, B., and Aiken, A. Data-driven

equivalence checking. In Object Oriented Programming Systems Languages and

Applications (2013), OOPSLA ’13, pp. 391–406.

[60] Sharma, R., Schkufza, E., Churchill, B., and Aiken, A. Condition-

ally correct superoptimization. In Object-Oriented Programming, Systems, Lan-

guages, and Applications (2015), OOPSLA ’15, pp. 147–162.

[61] Stepp, M., Tate, R., and Lerner, S. Equality-based translation validator

for LLVM. In Computer Aided Verification (2011), CAV’11, pp. 737–742.

[62] Tate, R., Stepp, M., Tatlock, Z., and Lerner, S. Equality saturation: A

new approach to optimization. In Principles of Programming Languages (2009),

POPL ’09, pp. 264–276.

[63] The Sage Developers. SageMath, the Sage Mathematics Software System

(Version 7.5.1), 2017. http://www.sagemath.org.

[64] Tristan, J.-B., Govereau, P., and Morrisett, G. Evaluating value-

graph translation validation for LLVM. In Programming Language Design and

Implementation (2011), PLDI ’11, pp. 295–305.

[65] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. Efficient

software-based fault isolation. SIGOPS Operating Systems Review 27, 5 (1994).

[66] Wang, W., Barrett, C., and Wies, T. Partitioned memory models for

program analysis. In Verification, Model Checking, and Abstract Interpretation

(2017), VMCAI ’17, pp. 539–558.

[67] Yee, B., Sehr, D., Dardyk, G., Chen, B., Muth, R., Ormandy, T.,

Okasaka, S., Narula, N., and Fullagar, N. Native client: A sandbox

for portable, untrusted x86 native code. In IEEE Symposium on Security and

Privacy (Oakland) (2009).

BIBLIOGRAPHY 100

[68] Zaks, A., and Pnueli, A. Covac: Compiler validation by program analysis

of the cross-product. In International Symposium on Formal Methods (2008),

FM ’08, pp. 35–51.

[69] Zhang, L., Yang, G., Rungta, N., Person, S., and Khurshid, S. Invari-

ant discovery guided by symbolic execution. In The Java PathFinder Workshop

(2013).

[70] Zhang, Z., and Koutsoukos, X. Generic value-set analysis on low-level

code. In Cyber-Physical Systems Workshop (2014).

[71] Zuck, L., Pnueli, A., Fang, Y., and Goldberg, B. Voc: A methodology

for the translation validation of optimizing compilers. Journal of Universal

Computer Science 9, 3 (2003), 223–247.

