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Groups and Graphs

@ Graphs are taken to be simple (no loops, multiloops), undirected and
unweighted.

o Let ['1,I> be graphs. ¢ : 1 — Iy is an isomorphism of graphs if
¢: V() — V() and ¢ : E(T'1) — E(I'2) are bijections and
adjacency between edges and vertices are preserved under ¢. In some
sense this means 1 and > are “the same”.

@ The isomorphisms from ['; to itself form the automorphism group,
denoted Aut(l'1). These automorphisms are called symmetries.

@ Alternatively, a symmetry is a permutation of the vertices that
preserves edge-adjacency.

e If ve V(N and ¢ is a symmetry of I' then v and ¢(v) have the same
local properties.



Group Actions

@ Suppose G is a group and S is a set. Sym(S) is the group of all
bijections on S. A group action of G on S is a group homomorphism
¢ G — Sym(S).

o If x € S and g € G then xg denotes ¢(x)(g).

e Orbg(x) = {xglg € G}.

e Stabg(x) = {g|xg = x}.

e ¢ is transitive if for all x € S, Orbg(x) = S.

For a graph I, Aut(I') acts on both V/(I') and E(I'). We talk about edge

stabilizers and vertex stabilizers to mean the automorphisms fixing a
particular edge or vertex.

For vertices (or edges) in the same orbit, the vertex (edge) stabilizers are
all the same, along with other local properties.



Semi-Symmetric Graphs

o [ is edge-transitive if Aut(I") acts transitively on E(I"). This means
that every edge has the same local properties.

o [ is vertex-transitive if Aut(I) acts transitively on V/(I'). Again, this
means that every vertex has the same local properties.

@ These two are independent; neither implies the other.

@ Semi-Symmetric graphs are graphs which are edge-transitive, not
vertex-transitive and regular.

o All edge-transitive graphs fall into one of the following three
categories: symmetric, strongly bi-transitive, %—arc—transitive.

@ semi-symmetric graphs are strongly-bitransitive graphs that are
regular.

‘ Vertex-Transitive  Not Vertex-Transitive

Dart-Transitive Symmetric Impossible
Not Dart-Transitive %—Arc transitive  Strongly Bi-Transitive




Properties of Semi-Symmetric Graphs

o Edge-Transitive but not Vertex-Transitive and Regular

@ Bi-partite (and therefore bi-transitive)

@ there is no symmetry that interchanges a white vertex with a black

vertex

@ The orbit of a vertex includes every vertex of the same color.
> white vertices “look” the same and black vertices “look” the same.
» preserved properties include stabilizers and distances to vertices of a

given color

Figure: Folkman's graph, the smallest semi-symmetric graph. [2]



Problem Statement

@ What is the smallest 5-valent semi-symmetric graph?
» typically proving this is hard, and is done either by enumeration or long
combinatorial arguments
» algorithms to brute-force enumerate edge-transitive graphs are too
expensive to get past 30 vertices
» Conder et al. is an exception, where they use powerful results from
Goldschmidt to classify graphs [1].
@ How can we construct 5-valent semi-symmetric graphs?

> are there easy constructions?
» can we find an infinite family?



Previous Results

@ The smallest semi-symmetric graph is Folkman's graph on 20 vertices
and 40 edges.

@ The smallest 3-valent semi-symmetric graph is the Gray graph on 54
vertices.

@ A semi-symmetric graph must have n vertices where n is even and not
2p or 2p? for any prime p. [2]

Figure: Folkman's graph, the smallest semi-symmetric graph. [2]



Bi-Coset Construction

Let G be a group and let H, K be subgroups. Construct a graph
[ = bee(G; H, K) with

V(r)=G/HUG/K
E(N)={(Hg,Kg)lg € G}

Hgy is adjacent to Kgy if and only if Hgy N Kg» # 0.
dvalent & [H: HNK]=[K: HNK]=d.
connected < (H,K) = G.

always edge-transitive, bi-partite (bi-transitive).

e 6 6 o o

all bi-transitive graphs come from this construction: pick u, v € V(')
adjacent, let H = Stabg(u), K = Stabg(v). Then bee(G; H,K) =T.

e Forall g € G, bec(G; H,K) = bec(G; g tHg, g *Kg).



Bi-Coset Construction Searches

How to find d-valent semi-symmetric graphs:
@ Pick a finite group G from a database.

@ For each H < G with d|#H, consider a representative K of every
conjugacy class of subgroups that can satisfy

[H:HNK]=[K:HNK]=d.
© Compute ' = bee(G; H, K).

@ Determine if [ is vertex-transitive.

Searching all finite groups of size less than 1200, | have found three
5-valent semi-symmetric graphs. Only one of these, with 250 vertices, was
previously discovered by Lazebnik and Viglione [3].

Question: what are the graphs we have found?



What has been found?

e If [is bi-transitive, degree d and Aut™(I") has a subgroup of size
n < 1200 transitive on the edges of ' then ' was found by the search.

@ In the case where H < Aut(I) is edge-transitive and |H| = |E(I")]| |
have found all semi-symmetric 5-valent graphs with less than 1200
edges.

@ When H < Aut(") acts on the edges this way, it acts regularly.
Namely, for e;, eo € E(I') there exists exactly one h € H so that
erh = ex. Equivalently, the dart-stabilizers in H are trivial. | call a
graph with such an action edge-regular.

@ Therefore, every edge-regular semi-symmetric graph with less than
1200 edges has been found.

Question: how can | classify which graphs are edge-regular?
Better Question: how can | classify which graphs are not edge-regular?



Cayley Graphs

Let G be a group and S C G. Define I' = Cay(G, S) to be
the(undirected!) graph with V(I') = G and E(I') = {{g,sg}|g € G}.

ba ba?
o

b ba’

Figure: Cay(Ds,{a, b}) where a (red) is rotation and b (blue) is reflection.

o G acts regularly on the vertices of Cay(G,S).



Line Graphs

Let A be a graph. Define ' = L(A) so that V(') = E(A) and two
vertices of I are adjacent when the corresponding edges are adjacent.

{1,2} {2,4}
2
3
{1.4} {23}
1 4
3 {13) (34)
AUt(K4) =S5, AUt(L( )) 5S4 xS

@ L(A) usually has more edges than A has vertices.
o Aut(L(A)) # Aut(A) in general.



Line graphs of Edge-Regular Graphs are Cayley Graphs

Motivation: Cayley graphs are vertex-regular, and line graphs “switch”
edges and vertices!

Lemma
If G is a group with HK < G, HNK =1 and (H,K) = G then
L(bce(G; H,K)) = Cay(G,HU K — {1}).

Proof.

Explicitly construct the vertex and edge set of L(bcc(G; H, K)). They
match Cay(G,H UK — {1}) exactly. O
Theorem

A connected bi-transitive graph A is edge-regular if and only if there exists
a group G and a subset S C G such that L(A) = Cay(G, S).

v




Proof of Theorem

Theorem

A connected bi-transitive graph A is edge-regular if and only if there exists
a group G and a subset S C G such that L(A) = Cay(G, S).

Proof.

(=). Suppose G < Aut(A) acts regularly on the edges of A. Pick H and
K to be stabilizers of an adjacent white and black vertex in G,
respectively. HN K is a dart-stabilizer, so HN K = 1. A = bee(G; H, K).
The lemma establishes that L(A) = Cay(G,HU K —{1}).

(«<). Outline: Let ' = L(A). For A bi-partite, Aut(I") acts on E(A) in

the same way that Aut(I") acts on V/(I') (demonstrated on the next slide).
If I = Cay(G,S), then G < Aut(l') acts regularly on the vertices of I', and
therefore G acts regularly on the edges of A. O




Lemma
If A is a bi-partite graph, I = L(A) and G < Aut(I"), then G acts on A as
a subgroup of Aut(A).

Proof.

(Sketch) The edges of T are colored white and black from the vertices of
A. Let K be a clique in I with [V(K)| > 3. Suppose let K’ be an induced
subgraph with 3 vertices. By pigeonhole, two edges must be the same
color, say red. Then there are two ways K’ could be colored:

VAN VANNEAY,
Ki Lfl(Kl) K> Lfl(Kg)

K’ = K is a contradiction; the coloring of A must be violated. Therefore,
all cliques are of a single color, and maximal ones correspond to a single

vertex in A. G permutes maximal cliques preserving vertex adjacencies, so
G acts on the vertices of A preserving edge-adjacency. [




Worthiness

Lemma

For any prime p, every connected, unworthy, bi-partite, edge-transitive
graph with valence p is isomorphic to Kp p.

Proof.

Suppose u1, ..., us is a maximal set of white vertices that have the same
neighbours. By edge-transitivity, all white vertices are partitioned into sets
of size s > 1 that have the same neighbours. If v is black then its p
neighbours are partitioned into sets of size s so s|p = s =p. The p

neighbours of uy,..., up will be black vertices vi,...,v,. In turn, their
neighbours are exactly uy, ..., u,. These form a connected component
isomorphic to Kp . O]

.
Corollary

Every 5-valent semi-symmetric graph is worthy.




Summary of Results

@ Line graphs of edge-regular bi-transitive graphs are Cayley.

> | have enumerated these graphs through 1200 edges.
> This has led to conjectures to generalize Marusit's work [4].

@ 5-valent semi-symmetric graphs are worthy.

@ A candidate for the smallest 5-valent semi-symmetric graph which is
minimal.

@ An improved census webpage which now includes several 5-valent
bi-transitive graphs.



Next Steps

e Find infinite families of 5-valent semi-symmetric graphs.
» Generalizing voltage graphs for the 5-valent semi-symmetric graphs

found may be useful.
> |t may be possible to generalize some 3-valent families such as
Marusi¢'s.
@ Develop new search techniques to establish whether the 5-valent
semi-symmetric graphs of 120 vertices is indeed minimal.

Figure: A 5-valent semi-symmetric graph with 120 vertices.
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Questions?

Berkeley Churchill <berkeley@berkeleychurchill.com>

You can find copies of these slides and a link to the mini-census at
http://www.berkeleychurchill.com/research
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