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Groups and Graphs

Graphs are taken to be simple (no loops, multiloops), undirected and
unweighted.

Let Γ1, Γ2 be graphs. φ : Γ1 → Γ2 is an isomorphism of graphs if
φ : V (Γ1)→ V (Γ2) and φ : E (Γ1)→ E (Γ2) are bijections and
adjacency between edges and vertices are preserved under φ. In some
sense this means Γ1 and Γ2 are “the same”.

The isomorphisms from Γ1 to itself form the automorphism group,
denoted Aut(Γ1). These automorphisms are called symmetries.

Alternatively, a symmetry is a permutation of the vertices that
preserves edge-adjacency.

If v ∈ V (Γ) and φ is a symmetry of Γ then v and φ(v) have the same
local properties.



Group Actions

Suppose G is a group and S is a set. Sym(S) is the group of all
bijections on S . A group action of G on S is a group homomorphism
φ : G → Sym(S).

If x ∈ S and g ∈ G then xg denotes φ(x)(g).

OrbG (x) = {xg |g ∈ G}.
StabG (x) = {g |xg = x}.
φ is transitive if for all x ∈ S , OrbG (x) = S .

For a graph Γ, Aut(Γ) acts on both V (Γ) and E (Γ). We talk about edge
stabilizers and vertex stabilizers to mean the automorphisms fixing a
particular edge or vertex.

For vertices (or edges) in the same orbit, the vertex (edge) stabilizers are
all the same, along with other local properties.



Semi-Symmetric Graphs

Γ is edge-transitive if Aut(Γ) acts transitively on E (Γ). This means
that every edge has the same local properties.

Γ is vertex-transitive if Aut(Γ) acts transitively on V (Γ). Again, this
means that every vertex has the same local properties.

These two are independent; neither implies the other.

Semi-Symmetric graphs are graphs which are edge-transitive, not
vertex-transitive and regular.

All edge-transitive graphs fall into one of the following three
categories: symmetric, strongly bi-transitive, 1

2 -arc-transitive.

semi-symmetric graphs are strongly-bitransitive graphs that are
regular.

Vertex-Transitive Not Vertex-Transitive

Dart-Transitive Symmetric Impossible
Not Dart-Transitive 1

2 -Arc transitive Strongly Bi-Transitive



Properties of Semi-Symmetric Graphs

Edge-Transitive but not Vertex-Transitive and Regular
Bi-partite (and therefore bi-transitive)
there is no symmetry that interchanges a white vertex with a black
vertex
The orbit of a vertex includes every vertex of the same color.

I white vertices “look” the same and black vertices “look” the same.
I preserved properties include stabilizers and distances to vertices of a

given color

Figure: Folkman’s graph, the smallest semi-symmetric graph. [2]



Problem Statement

What is the smallest 5-valent semi-symmetric graph?
I typically proving this is hard, and is done either by enumeration or long

combinatorial arguments
I algorithms to brute-force enumerate edge-transitive graphs are too

expensive to get past 30 vertices
I Conder et al. is an exception, where they use powerful results from

Goldschmidt to classify graphs [1].

How can we construct 5-valent semi-symmetric graphs?
I are there easy constructions?
I can we find an infinite family?



Previous Results

The smallest semi-symmetric graph is Folkman’s graph on 20 vertices
and 40 edges.

The smallest 3-valent semi-symmetric graph is the Gray graph on 54
vertices.

A semi-symmetric graph must have n vertices where n is even and not
2p or 2p2 for any prime p. [2]

Figure: Folkman’s graph, the smallest semi-symmetric graph. [2]



Bi-Coset Construction

Let G be a group and let H,K be subgroups. Construct a graph
Γ = bcc(G ; H,K ) with

V (Γ) = G/H ∪ G/K

E (Γ) = {(Hg ,Kg)|g ∈ G}

Hg1 is adjacent to Kg2 if and only if Hg1 ∩ Kg2 6= ∅.
d-valent ⇔ [H : H ∩ K ] = [K : H ∩ K ] = d .

connected ⇔ 〈H,K 〉 = G .

always edge-transitive, bi-partite (bi-transitive).

all bi-transitive graphs come from this construction: pick u, v ∈ V (Γ)
adjacent, let H = StabG (u),K = StabG (v). Then bcc(G ; H,K ) ∼= Γ.

For all g ∈ G , bcc(G ; H,K ) ∼= bcc(G ; g−1Hg , g−1Kg).



Bi-Coset Construction Searches

How to find d-valent semi-symmetric graphs:

1 Pick a finite group G from a database.

2 For each H ≤ G with d |#H, consider a representative K of every
conjugacy class of subgroups that can satisfy
[H : H ∩ K ] = [K : H ∩ K ] = d .

3 Compute Γ ∼= bcc(G ; H,K ).

4 Determine if Γ is vertex-transitive.

Searching all finite groups of size less than 1200, I have found three
5-valent semi-symmetric graphs. Only one of these, with 250 vertices, was
previously discovered by Lazebnik and Viglione [3].

Question: what are the graphs we have found?



What has been found?

If Γ is bi-transitive, degree d and Aut+(Γ) has a subgroup of size
n ≤ 1200 transitive on the edges of Γ then Γ was found by the search.

In the case where H ≤ Aut(Γ) is edge-transitive and |H| = |E (Γ)| I
have found all semi-symmetric 5-valent graphs with less than 1200
edges.

When H ≤ Aut(Γ) acts on the edges this way, it acts regularly.
Namely, for e1, e2 ∈ E (Γ) there exists exactly one h ∈ H so that
e1h = e2. Equivalently, the dart-stabilizers in H are trivial. I call a
graph with such an action edge-regular.

Therefore, every edge-regular semi-symmetric graph with less than
1200 edges has been found.

Question: how can I classify which graphs are edge-regular?
Better Question: how can I classify which graphs are not edge-regular?



Cayley Graphs

Let G be a group and S ⊂ G . Define Γ = Cay(G ,S) to be
the(undirected!) graph with V (Γ) = G and E (Γ) = {{g , sg}|g ∈ G}.

Figure: Cay(D4, {a, b}) where a (red) is rotation and b (blue) is reflection.

G acts regularly on the vertices of Cay(G ,S).



Line Graphs

Let ∆ be a graph. Define Γ = L(∆) so that V (Γ) = E (∆) and two
vertices of Γ are adjacent when the corresponding edges are adjacent.

3

2

1 4

{1,3} {3,4}

{2,3}

{2,4}{1,2}

{1,4}

Aut(K4) ∼= S4 Aut(L(K4)) ∼= S4 × S2

L(∆) usually has more edges than ∆ has vertices.

Aut(L(∆)) 6= Aut(∆) in general.



Line graphs of Edge-Regular Graphs are Cayley Graphs

Motivation: Cayley graphs are vertex-regular, and line graphs “switch”
edges and vertices!

Lemma

If G is a group with H,K ≤ G, H ∩ K = 1 and 〈H,K 〉 = G then
L(bcc(G ; H,K )) ∼= Cay(G ,H ∪ K − {1}).

Proof.

Explicitly construct the vertex and edge set of L(bcc(G ; H,K )). They
match Cay(G ,H ∪ K − {1}) exactly.

Theorem

A connected bi-transitive graph ∆ is edge-regular if and only if there exists
a group G and a subset S ⊂ G such that L(∆) ∼= Cay(G , S).



Proof of Theorem

Theorem

A connected bi-transitive graph ∆ is edge-regular if and only if there exists
a group G and a subset S ⊂ G such that L(∆) ∼= Cay(G , S).

Proof.

(⇒). Suppose G ≤ Aut(∆) acts regularly on the edges of ∆. Pick H and
K to be stabilizers of an adjacent white and black vertex in G ,
respectively. H ∩ K is a dart-stabilizer, so H ∩ K = 1. ∆ ∼= bcc(G ; H,K ).
The lemma establishes that L(∆) ∼= Cay(G ,H ∪ K − {1}).

(⇐). Outline: Let Γ = L(∆). For ∆ bi-partite, Aut(Γ) acts on E (∆) in
the same way that Aut(Γ) acts on V (Γ) (demonstrated on the next slide).
If Γ = Cay(G ,S), then G ≤ Aut(Γ) acts regularly on the vertices of Γ, and
therefore G acts regularly on the edges of ∆.



Lemma

If ∆ is a bi-partite graph, Γ = L(∆) and G ≤ Aut(Γ), then G acts on ∆ as
a subgroup of Aut(∆).

Proof.

(Sketch) The edges of Γ are colored white and black from the vertices of
∆. Let K be a clique in Γ with |V (K )| ≥ 3. Suppose let K ′ be an induced
subgraph with 3 vertices. By pigeonhole, two edges must be the same
color, say red. Then there are two ways K ′ could be colored:

⇒ ⇒
K1 L−1(K1) K2 L−1(K2)

K ′ = K2 is a contradiction; the coloring of ∆ must be violated. Therefore,
all cliques are of a single color, and maximal ones correspond to a single
vertex in ∆. G permutes maximal cliques preserving vertex adjacencies, so
G acts on the vertices of ∆ preserving edge-adjacency.



Worthiness

Lemma

For any prime p, every connected, unworthy, bi-partite, edge-transitive
graph with valence p is isomorphic to Kp.p.

Proof.

Suppose u1, . . . , us is a maximal set of white vertices that have the same
neighbours. By edge-transitivity, all white vertices are partitioned into sets
of size s > 1 that have the same neighbours. If v is black then its p
neighbours are partitioned into sets of size s so s|p ⇒ s = p. The p
neighbours of u1, . . . , up will be black vertices v1, . . . , vp. In turn, their
neighbours are exactly u1, . . . , up. These form a connected component
isomorphic to Kp,p.

Corollary

Every 5-valent semi-symmetric graph is worthy.



Summary of Results

Line graphs of edge-regular bi-transitive graphs are Cayley.
I I have enumerated these graphs through 1200 edges.
I This has led to conjectures to generalize Marušič’s work [4].

5-valent semi-symmetric graphs are worthy.

A candidate for the smallest 5-valent semi-symmetric graph which is
minimal.

An improved census webpage which now includes several 5-valent
bi-transitive graphs.



Next Steps

Find infinite families of 5-valent semi-symmetric graphs.
I Generalizing voltage graphs for the 5-valent semi-symmetric graphs

found may be useful.
I It may be possible to generalize some 3-valent families such as

Marušič’s.

Develop new search techniques to establish whether the 5-valent
semi-symmetric graphs of 120 vertices is indeed minimal.
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Figure: A 5-valent semi-symmetric graph with 120 vertices.
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Questions?

Berkeley Churchill <berkeley@berkeleychurchill.com>

You can find copies of these slides and a link to the mini-census at
http://www.berkeleychurchill.com/research
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