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Abstract. The problem of summing a set of mutual recurrence relations
with constant coefficients is investigated. A method is presented for sum-
ming an order d system of the form A(n) =

∑d
i=1 MiA(n − i) + G(n),

where A,G : N → Km and M1, . . . ,Md ∈ Mm(K) for some field K and
natural number m. The procedure expresses the sum

∑n
i=0 A(i) in terms

of A(n), . . . , A(n− d), initial conditions and sums of the inhomogeneous
term G(n).

1 Problem Statement

An important task in computer algebra systems is evaluating indefinite sums,
that is computing values sn =

∑n
k=0 ak where the ak are some sequence depend-

ing only on k. Today many functions can be summed, in part due to the pioneer-
ing work of many researchers [3], [5], [7]. Nonetheless, there are still countless
instances where we lack algorithms to sum particular expressions, or the algo-
rithms that exist are inefficient or produce undesirable outputs.

One area of interest is summing recurrence relations. Summing any ak is a
special case of computing the value of An where An = An−1 + ak and A0 = 0.
Recurrence relations arise frequently in algorithm analysis and numerical anal-
ysis of differential equations. The classical example is the Fibonacci sequence,
defined as a function f : N→ N 3 given by F (n) = F (n− 1) +F (n− 2) ∀n ≥ 2
with F (0) = 0, F (1) = 1. It is well known4 that this sequence satisfies the
property

∑n
i=0 Fi = Fn+2 − 1.

This identity is nice because it presents the sum in terms of the original
Fibonacci symbol. An even trickier situation is a system of linear recurrences,
often referred to as mutual recurrences in the literature. Consider the following
example: A,B : N → Q satisfy A(n + 2) − A(n + 1) − A(n) − B(n) = 1 and
−A(n)+B(n+2)−B(n+1)−B(n) = 1 with A(0) = B(0) = 0 and A(1) = B(1) =
1. How could one write an algorithm that computes an identical expression for

? This work was supported in part by the National Science Foundation under a
Research Experiences for Undergraduates (REU) grant, NSF Award No. 1004409.

3 We use N = {n ∈ Z|n ≥ 0}.
4 F (0) = F (2)− 1 holds true. The proof is by induction: suppose

∑n
i=0 Fi = Fn+2− 1

and add Fn+1 to both sides of the equation to verify the formula.
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i=0A(i) in terms of the symbols A and B themselves? How could this be

generalized to deal with any such system? In this paper we present a procedure
which can compute the sum in a closed form any time the inhomogeneous term
can be summed repeatedly.

2 Related Work

The primary inspiration for this work is Ravenscroft and Lamagna’s work on
summation of a single linear recurrence. They provide an efficient algorithm to
express the sum of a homogeneous recurrence A(n) =

∑d
i=1miA(n− i) in terms

of A(n− d), . . . , A(n− 1) by using a “summing factor” to deal with recurrences
that initially appear to be degenerate. They also provide a technique that handles
some inhomogeneous terms [8].

Several authors study summing C-finite sequences (those determined by re-
currence relations with constant coefficients). Greene and Wilf provide an algo-
rithm to sum a general form of products of C-finite sequences [4]. Kauers and
Zimmermann study determining whether summation relationships exist between
different C-finite sequences [6].

Work on P -finite sequences (those determined by recurrence relations with
polynomial coefficients) has also been done. Abramov and van Hoeij discuss
summing P -finite sequences in terms of the original coefficients [1]. Chyzak gen-
eralizes the works of Gosper [3] and Zeilberger [10] to sum P -finite sequences
that are not hypergeometric [2]. Schneider extends Karr’s approach [5] to P -finite
sequences as well [9].

3 Systems of Mutual Recurrences

Definition 1 (Mutual Recurrence). Let K be a field, and m, d ∈ Z+. A
system of mutual linear recurrence relations with constant coefficients on K of
order d in m variables is a set of m functions A1(n), . . . , Am(n) mapping N into
K satisfying


A1(n)
A2(n)

...
Am(n)

 = M1


A1(n− 1)
A2(n− 1)

...
Am(n− 1)

+ · · ·+Md


A1(n− d)
A2(n− d)

...
Am(n− d)

+


g1(n)
g2(n)

...
gm(n)


for some M1, . . . ,Md ∈ Mm(K) and g1, . . . , gm mapping N → K. Typically we
will refer to this as a “mutual recurrence”.

We call the vector containing the gi(n) the inhomogeneous term. If this in-
homogeneous term is zero, the mutual recurrence is homogeneous. We call the
values {Ai(j) : 1 ≤ i ≤ m, 0 ≤ j < d} the initial conditions for the recurrence.
The notation in this definition is used throughout the paper whenever a specific
mutual recurrence is being considered.
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Example 1. We will use the following example of a mutual recurrence to demon-
strate computational procedures throughout the paper. For this example m = 2,
so for convenience we use A(n) to denote A1(n) and B(n) to denote A2(n).
A(n) = 2A(n− 1) +B(n− 1), B(n) = A(n− 1) + 2B(n− 2).

This may be written in the form stated in the definition as(
A(n)
B(n)

)
=

(
2 1
1 0

)(
A(n− 1)
B(n− 1)

)
+

(
0 0
0 2

)(
A(n− 2)
B(n− 2)

)
+

(
0
0

)
.

Here the order is d = 2 and, coincidentally, m = 2 as well. ut

4 Homogeneous Case

The homogeneous case can be reduced to a set of C-finite sequences easily and
then solved with any of the existing methods, such as [1], [2], [4], [8]. To do so
we write the system as follows:

(E − 2)A(n)−B(n) = 0, (1)

(E2 − 2)B(n)− EA(n) = 0. (2)

Here E is the shift operator defined as Ef(n) = f(n + 1). Regarding the
above as a system of equations with coefficients in Q(E), we can find C-finite
relations explicitly for A and B. In this case we could multiply (1) by (E2 − 2)
and add (2) leaving (E3 − 2E2 − 3E + 4)A(n) = 0. This demonstrates that A
is C-finite and can be summed. B(n) can be handled similarly. This approach
works in general for homogeneous systems.

However, by combining an inhomogeneous term G, it is possible to construct
a sequence that is not C-finite or P -finite. Yet so long as we can sum G using
some algorithm, the method we present can still be used to sum the mutual
recurrence.

5 Inhomogeneous Case

For the following discussion, fix a particular mutual recurrence and use the
notation provided in the definition. Our goal is to compute

∑n
j=0Ai(j) for each

i ∈ {1, . . . ,m} and express the answer in terms of Span{Ai(n − j) : 1 ≤ i ≤
m, 0 ≤ j ≤ d}, the initial conditions and possibly an inhomogeneous term. For
any function f : N → K, define S(f(n)) =

∑n
i=d f(i). S will henceforth be

known as the summation operator. Recursively define Sj
i (n) = S(Sj−1

i (n)) and
S1
i (n) = Si(n) = S(Ai(n)). This operator corresponds to the notion of summing

that allowed Ravenscroft and Lamagna to symbolically sum linear recurrences
[8].

It becomes convenient to write a mutual recurrence as follows. In the following
equation, the leftmost matrix is a block matrix, while the others are not. Check
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that the dimensions of the matrices are, from left to right, m×m(d+ 1), m(d+
1) × 1 and m × 1, and that the following equation is identical to the definition
provided earlier.

(
I −M1 −M2 · · · −Md

)



A1(n)
A2(n)

...
Am(n)

...
A1(n− d)
A2(n− d)

...
Am(n− d)


=


g1(n)
g2(n)

...
gm(n)

 .

This equation can be manipulated using the standard three row operations
along with the S operator without changing its validity. This means we may
perform the following operations: (i) multiply rows by scalars, (ii) add any row
times a scalar to another row, (iii) swap rows and (iv) apply the S operator to
any row.

The S operator now deserves some attention. Let V be a vector space over
K with basis β = {Ai(n − j) : 1 ≤ i ≤ m, 0 ≤ j ≤ d} ∪ {Sj

i (n) : 1 ≤ i ≤ m, j ∈
Z+}∪ {1}. Throughout our work S will only be applied to functions of the form
v(n)+i(n) where v ∈ V and i(n) is an inhomogeneous term that depends only on
n, and never on any function of the Ai. Therefore to understand S we need only
understand how S acts on β; summing the inhomogeneous parts yields other
inhomogeneous parts, and this may be accomplished via other methods [3], [5],
[7].

From the definitions, we already know S(Sj
i (n)) = Sj+1

i (n). The others are
not hard to compute as S(Ai(n−j)) = Ai(d−j)+Ai(d−j+1)+· · ·+Ai(n−j) =∑d−1

k=d−j Ai(k) +
∑n

k=dAi(k) −
∑n

k=n−j+1Ai(k) = Si(n) −
∑n

k=n−j+1Ai(k) +∑d−1
k=d−j Ai(k) and S(1) = 1 + 1 + · · ·+ 1 = (n−d+ 1). Now consider applying S

to a row of a matrix equation. By this we mean expanding the entire row of the
equation, applying S to both the right and left hand sides, and then returning
it to matrix form. Unless the row only contains an inhomogeneous term and
nothing else (this does not occur in our procedure), applying S will create a new
column including an Sj

i (n). Therefore, we need to expand our matrix equation
by t blocks of size m ×m. t will be assigned a definite value later. Here is the
new matrix equation, now expanded:
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(
0 · · · 0 I −M1 · · · −Md

)
∗(

St
1(n) · · · St

m(n) · · · S1(n) · · · Sm(n) A1(n) · · · Am(n) · · · A1(n− d) · · · Am(n− d)
)t

=


g1(n)
g2(n)

...
gm(n)


For brevity we will notationally abbreviate equations of the above form as

an augmented matrix like this,(
0 0 · · · 0 I −M1 −M2 · · · −Md G

)
.

Here G denotes the column of inhomogeneous terms. In the following we will
explicitly demonstrate the action of the summation operator on an augmented
matrix.

Suppose we start with the following augmented matrix,(
0 0 · · · 0 Bj Bj−1 · · · B1 C1 C2 · · · Ck G

)
where B1, . . . , Bj and C1, . . . , Ck are m ×m matrices. In the expanded matrix

equation, Bj is multiplied by the block matrix containing the Sj
1(n), . . . , Sj

m(n)

as rows. A row of their product is therefore a linear combination of Sj
i (n).

Applying the summation operator creates an identical linear combination of
Sj+1
1 (n), . . . , Sj+1

m (n). The same logic applies to Bj−1, . . . , B1. In block matrix
form, all the B1, . . . , Bj appear to be shifted one block to the left after applying
the summation operator. The result looks like(

0 0 · · · 0 Bj Bj−1 · · · B1 ∗ ∗ ∗ · · · ∗ ∗
)
.

To determine the block matrix represented by the leftmost asterisk, consider
when Si(n) appears in the image of the S operator; it appears once for every

occurrence of Ai(n − j) (for any j ∈ N) in the preimage. This implies
∑k

i=1 Ci

is the value of the leftmost asterisk.
For the kth asterisk to the right of the separator, the number of Ai(n − k)

in the image of S is given by the negation of the number of Ai(n − l) in the
preimage, where l > k. This result is best stated as a lemma.

Lemma 1. Given an augmented block matrix of the form(
0 0 · · · 0 Bj Bj−1 · · · B1 C1 C2 · · · Ck G

)
applying S to each row yields a new block matrix

(
0 0 · · · 0 Bj Bj−1 · · · B1

∑k
i=1 Ci −

∑k
i=2 Ci −

∑k
i=3 Ci · · · −Ck 0 G′

)
where G′ is some column matrix of inhomogeneous functions.
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Our goal is to solve for S1(n), . . . , Sm(n) in terms of the Ai(n−j) and inhomo-
geneous terms. To accomplish this we attempt to use the four row operations to
put the matrix into the form

(
0 0 · · · 0 I ∗ ∗ · · · ∗ ∗

)
where the matrices marked

by ∗ need not satisfy any conditions. At this point, each of S1(n), . . . , Sm(n) can
be fully solved via back-substitution. The following example illustrates how this
works in tandem with Lemma 1.

Example 2. In the context of Example 1, we will demonstrate how this can be
used to evaluate the sums we desire. Begin by writing the mutual recurrence as
an augmented matrix,

(
0 I −M1 −M2 G

)
=

(
0 0 1 0 −2 −1 0 0 0
0 0 0 1 −1 0 0 −2 0

)
.

Apply the summation operator to both rows:(
−1 −1 2 1 0 0 0 0 −2A(1)−B(1)
−1 −1 1 2 0 2 0 0 −A(1)− 2B(1)− 2B(0)

)
Negate row 1 and add it to row 2:(

−1 −1 2 1 0 0 0 0 −2A(1)−B(1)
0 0 −1 1 0 2 0 0 A(1)−B(1)− 2B(0)

)
Sum row 2 again:(

−1 −1 2 1 0 0 0 0 −2A(1)−B(1)
−1 3 0 −2 0 0 0 0 (A(1)−B(1)− 2B(0))(n− 1) + 2B(1)

)
Negate row 1 and add it to row 2:

(
1 1 −2 −1 0 0 0 0 2A(1) +B(1)
0 4 −2 −3 0 0 0 0 (A(1)−B(1)− 2B(0))(n− 1) + 3B(1) + 2A(1)

)
Divide row two by 4 and subtract it from row 1:(

1 0 − 3
2 −

1
4 0 0 0 0 − 1

4 (A(1)−B(1)− 2B(0))(n− 1) + 3
2A(1) + 1

4B(1)
0 1 − 1

2 −
3
4 0 0 0 0 1

4 (A(1)−B(1)− 2B(0))(n− 1) + 3
4B(1) + 1

2A(1)

)
For completeness, observe that

∑n
i=0A(i) = SA(n)+A(1)+A(0) and

∑n
i=0B(i) =

SB(n) +B(1) +B(0) and

n∑
i=0

A(i) =
3

2
A(n) +

1

4
B(n) +

1

4
(A(1)−B(1)− 2B(0))n− 3

4
A(1) +

1

2
B(0) +A(0)

n∑
i=0

B(i) =
1

2
A(n) +

3

4
B(n)− 1

4
(A(1)−B(1)− 2B(0))n− 1

4
A(1) +

1

2
B(0).

Now we are ready to state the main procedure which is similar to the ap-
proach of this example.
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6 The Summation Procedure

Procedure 1 Given a mutual recurrence and its corresponding augmented ma-
trix, take its augmented matrix

U =
(

0 I −M1 −M2 · · · −Md G
)
.

For each t ≥ 0 do the following starting with U : (1) Augment the matrix with
t+ 1 blocks of m×m zero matrices on the left-hand side. (2) Duplicate each row
of the matrix t times. The matrix has dimensions (t + 1)m × (t + d + 3)m and
looks like: 

0 · · · 0 I −M1 −M2 · · · −Md G
0 · · · 0 I −M1 −M2 · · · −Md G
...

. . .
...

...
...

...
. . .

...
...

0 · · · 0 I −M1 −M2 · · · −Md G

 .

Number the block rows from top to bottom starting at 1. (3) Apply S to the
(t + 2 − i)th block row i times for 1 ≤ i ≤ t + 1. (4) If placing this matrix in
row-reduced echelon form results in some submatrix of the form(

0 0 · · · 0 I ∗ ∗ · · · ∗ ∗
)

then stop. Back-substitute to solve for each Si(n) when i ∈ {1, . . . ,m}. Otherwise
increment t by one and continue.

In the following we prove that this procedure terminates when m = 1 or when
d = 1. By construction, if it terminates we are guaranteed that the solution is
correct. That the procedure always terminates is left as a conjecture.

7 Analysis

Given integers m, d and matrices M1, . . . ,Md ∈Mm(K), define M0 = −Im and

f(i) =

d∑
k1=i

d∑
k2=k1

· · ·
d∑

ki+1=ki

Mki+1 .

On some occasions it is useful to consider a more general function of two vari-
ables,

f(i, j) =

d∑
k1=j

d∑
k2=k1

· · ·
d∑

ki+1=ki

αki+1.

For convenience when i ≥ 0 we also define f(−1, i) = Mi. Notice that f(i, i) =
f(i) for all nonnegative integers i. We also have the identity
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f(i, j) =

d∑
k=j

f(i− 1, k) (3)

which is easily checked from the definitions given. Typically m, d and M1, . . . ,Md

correspond to a particular mutual recurrence that should be clear from the con-
text.

Lemma 2. Procedure 1 terminates if the following statement holds: Given posi-
tive integers m, d, a field K and M1, . . . ,Mn ∈Mm(K), M0 = −Im, there exists
some t ∈ N such that the matrix

f(0) f(1) f(2) · · · f(t)
0 f(0) f(1) · · · f(t− 1)
0 0 f(0) · · · f(t− 2)
...

...
...

. . .
...

0 0 0 · · · f(0)


contains the vectors (0, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

m

), (0, 0, . . . , 0, 0, 1, . . . , 0︸ ︷︷ ︸
m

), · · · ,

(0, 0, . . . , 0, 0, 0, . . . , 1︸ ︷︷ ︸
m

) in its rowspace. Note that each entry in this tm × tm

matrix is an m×m block.

Proof. The matrix presented above is the matrix derived from performing the
four steps listed in the procedure for a particular value of t. If for some t the
rowspace of this matrix contains these m standard basis vectors, then the m×m
identity matrix can be formed as a submatrix from a linear combination of the
rows, and hence the procedure terminates.

The only thing left to check is that performing the steps of the procedure
results in a matrix in the above form. After completing step 2 in the procedure,
the matrix has tm rows and is

0 0 · · · 0 I −f(−1, 1) −f(−1, 2) · · · −f(−1, d) G
0 0 · · · 0 I −f(−1, 1) −f(−1, 2) · · · −f(−1, d) G
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 I −f(−1, 1) −f(−1, 2) · · · −f(−1, d) G

 .

We claim that applying the summation operator j + 1 times to any row will
result in the row appearing as

(
0 · · · 0 f(0) f(1) · · · f(j) f(j, j + 1) f(j, j + 2) · · · f(j, d) 0 · · · 0 G′

)
.

Using Lemma 1 this is easy to verify inductively. Assuming that after j + 1
summations the row takes the above form, summing once more obtains the form
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(
0 · · · 0 f(0) · · · f(j)

∑d
k=1 f(j, j + k) −

∑d
k=2 f(j, j + k) · · · −

∑d
k=d f(j, j + k) 0 · · · 0 G′

)
.

From the identity (3) it follows that this row equals

(
0 · · · 0 f(0) · · · f(j) f(j + 1) −f(j + 1, j + 2) · · · −f(j + 1, d) 0 · · · 0 G′

)
.

Therefore, after completing all of step 4, the matrix appears as
f(0) f(1) f(2) · · · f(t) ∗ ∗ · · · ∗ ∗

0 f(0) f(1) · · · f(t− 1) ∗ ∗ · · · ∗ ∗
0 0 f(0) · · · f(t− 2) ∗ ∗ · · · ∗ ∗
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · f(0) ∗ ∗ · · · ∗ ∗

 .

For now we are only concerned with the left-hand portion of this matrix.
If this matrix contains the necessary basis vectors in its rowspace, then the

identity matrix must exist as a submatrix of the left-hand block. If no such t
exists then the procedure never terminates. ut

Corollary 1. If f(0) = M1+M2+· · ·+Md−I is nonsingular, then the procedure
terminates when t = 1.

Lemma 3. Let p(x) = αdx
d + · · ·+α1x+α0 with α0, . . . , αd ∈ K. Then (x−1)t

divides p(x) if and only if f(0) = f(1) = · · · = f(t− 1) = 0.

Proof. We use the function f taking Mi = αi. By induction we show that
1

(x−1)t
∑d

i=0 f(−1, i)xi =
∑d

i=t f(t − 1, i)xi−t +
∑t

i=1
f(t−i)
(x−1)i for t ≥ 0. When

t = 0 this is just the polynomial we start with. The key to the inductive step is
the observation that for a generic polynomial g(x) = bnx

n + · · · + b1x + b0 the
quotient g(x)/(x− 1) can be computed by summing the coefficients, as is done
in the process of “synthetic division”. Specifically, g(x)/(x−1) = bnx

n−1 +(bn +
bn−1)xn−2+ · · ·+(bn+ · · ·+b1)+(bn+ · · ·+b1+b0)/(x−1). Using this technique,

divide each side of the inductive goal by (x− 1). 1/(x− 1)t+1
∑d

i=0 f(−1, i)xi =∑d
i=t+1

∑d
j=i f(t − 1, j)xi−(t+1) +

∑d
j=t f(t − 1, j)/(x − 1) +

∑t
i=1

f(t−i)
(x−1)i+1 =∑d

i=t+1 f(t, i)xi−(t+1) + f(t)/(x− 1) +
∑t+1

i=2
f(t+1−i)
(x−1)i =

∑d
i=t+1 f(t, i)xi−(t+1) +∑t+1

i=1
f(t+1−i)
(x−1)i . This completes the induction. Notice that now (x − 1)t divides

p(x) evenly if and only if f(0) = f(1) = · · · = f(t− 1). ut

Theorem 2. The procedure terminates when m = 1. Moreover, if (x−1)p||Mdx
d+

Md−1x
d−1 + · · ·+M1x+M0, then the procedure terminates when t = p. 5

5 When m = 1, each Mi ∈ K
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Proof. For some nonnegative integer p we have that (x−1)p||Mdx
d+Md−1x

d−1+
· · · + M1x + M0. By lemma 3 we know that f(0) = f(1) = · · · = f(p − 1) = 0,
and that f(p) 6= 0. By lemma 2 we know this implies the procedure terminates
since all the entries in the matrix are zero except the top-right entry. ut

Theorem 3. Procedure 1 terminates with the correct answer when d = 1.

Proof. The approach is to take the mutual recurrence of order 1 and explicitly
show that the condition in lemma 2 is satisfied. Let A = M1. The goal is to show
that for some t ≥ 0 the following matrix of dimension (t+ 1)m× (t+ 1)m

Z =


A− I −A 0 0 · · · 0

0 A− I −A 0 · · · 0
0 0 A− I −A · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · A− I


can be row-reduced into a matrix containing I as a submatrix. The easy case
is when A is nilpotent. Here, |A − I| 6= 0, so row reducing the matrix with
t = 0 yields the identity matrix. For the remainder of the cases we will first
discuss some facts about A and polynomials involving A, and then proceed to
the row-reduction.

Let µA(x) be the minimal polynomial of A, that is the polynomial of least
degree such that µA(A) = 0. We regard µA ∈ K[x] and can write µA(x) =
µkx

k+µk−1x
k−1+ · · ·µ1x+µ0 for some µi ∈ K, but define for any X ∈Mm(K),

µ(X) = µkX
k + · · ·+µ1X +µ0I. Let t be the greatest nonnegative integer such

that (x − 1)t divides µ(x) and write µ(x) = (x − 1)tq(x) for some q(x) ∈ K[x].
We define q(X) for a matrix X the same way we did for µA. Notice that this
allows us to perform the division algorithm with polynomials over matrices, in
the sense that for any polynomial g ∈ K[x] there exist polynomials s, r ∈ K[x]
such that q(X) = g(X)s(X) + r(X) where the degree of r is less than the degree
of g. This works because sums and products of a single matrix X freely commute
with each other.

Label the block rows of the matrix from top to bottom starting at 1. For
1 ≤ i ≤ t multiply the row by (A − I)t−iAi−1q(A). In the first block row the
leftmost block entry becomes µ(A) = (A− I)tq(A) = 0. For all subsequent rows
i ≤ t, the leftmost non-zero block entry equals the entry above it; namely the
leftmost non-zero block in row i is (A−I)t−i+1Ai−1q(A). In row t, the rightmost
block entry is −Atq(A) and the entry below it is still A − I. At this point row
reducing the matrix only leaves all the entries of the matrix nonzero except for
these two, so

Z ∼


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 Atq(A)
0 · · · 0 A− I

 .
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Using the division algorithm, write q(A) = (A−I)s(A)+αAp for some α ∈ K,
p ∈ N and s ∈ K[x]. Notice that α 6= 0, for if it were not then (x− 1)|q(x) which
would contradict its definition. Multiply the bottom row by s(A)At and subtract
from the row above. Divide the above row by α. This leaves the matrix

Z ∼


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 Ap+t

0 · · · 0 A− I

 .

Finally multiply the bottom row of the matrix by (Ap+t−1+Ap+t−2+· · ·+A1)
and subtract from the top row. This leaves the entry Ap+t− (Ap+t−1 +Ap+t−2 +
· · ·+A1)(A− I) = A in that row. Negate the bottom row and add the other row
to derive I in the bottom right corner of the matrix. ut

Corollary 2. For m = 1 and d = 1 the runtime is bounded by O(m3(t+ d)3).

For both cases, we can use the above theorems to provide an explicit value
for t ≤ m. The two longest steps in the procedure are applying the summation
operator and computing the row reduction. Via lemma 1 it takes O(m2(t+ d2))
time to sum one block row of the matrix in addition to the time it takes to
compute the sum of the inhomogeneous term. This must be performed only m
times if the results from row i are used to compute row i + 1. Therefore step 2
takes time O(m3(t+d2)). A naive implementation of step 3 using Gauss-Jordan
elimination will require O(m3(t+ d)3) time. Thus the third step dominates and
the asymptotic run time of the entire procedure is O(m3(t+ d)3) in addition to
the time required to sum inhomogeneous parts. ut

Notice that for both the m = 1 case and the d = 1 case there exists a
polynomial p(x) such that if q is the greatest integer where (x− 1)q|p(x) then t
is bounded above by q. This is reminiscent of Ranvenscroft and Lamagna’s result
in [8] where this power of t is used to derive a “summing factor” to sum linear
recurrences. This suggests a more general phenomena of a minimal polynomial
for a mutual recurrence that can be subject of further work. It also suggests
that understanding this minimal polynomial will yield more results about the
efficiency and termination of the procedure.

8 Conclusion

The procedure presented in this paper provides a way to compute symbolic
sums for both homogeneous and inhomogeneous mutual recurrences. It is an im-
provement over Ravenscroft and Lamagna’s [8] because it generalizes to mutual

recurrences and provably works when m = 1, d = 1 or |
∑d

i=1Mi−I| = 0. It also
extends the current work on P -finite and C-finite summation. Given a sequence
an that is not P -finite but can be summed via other methods, procedure 1 will
sum mutual recurrences where the ai appear as inhomogeneous terms.
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We believe that generalizing the proof of theorems 2 and 3 will be difficult for
two reasons. First, there is not a well-known theory of a characteristic polynomial
or minimal polynomial for a mutual recurrence that satisfies our needs, or a
theorem like Cayley-Hamilton which extends to multiple matrices. Secondly, the
ring generated by two m × m matrices is not necessarily commutative. When
there is only one matrix this ring commutes, which allowed many of the steps in
the proof of theorem 3.
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