
Summing Symbols in Mutual Recurrences

Berkeley Churchill

University of California, Santa Barbara
Santa Barbara, CA 93117

COCOON 2011
August 16, 2011

Joint work with Ed Lamagna, University of Rhode Island

Problem Statement

How can computers determine summation identities for recursive
sequences in a “nice” way?
For example, consider a mutual recurrence similar to this:

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2.

Is there a way for a computer to derive a general formula for∑n
i=0 Ai?

I The algorithm should apply to any mutual recurrence.

I Want solution in terms of the original sequence itself

I E.g. for the Fibonacci sequence,
∑n

i=0 Fi = Fn+2 − 1.

I Algorithm should handle inhomogeneous terms

I Previously solved for a single recurrence
[Greene & Wilf, 2007], [Ravenscroft & Lamagna, 2008]

Example: Fibonacci Sequence

Solution [Ravenscroft & Lamagna, 2008]: Sum the recurrence itself!

Fn = Fn−1 + Fn−2

Fn−1 = Fn−2 + Fn−3

...

+ F2 = F1 + F0
n∑

i=2

Fi =
n−1∑
i=1

Fi +
n−2∑
i=0

Fi

Then adjust the limits:

n∑
i=0

Fi − F1 − F2 =
n∑

i=0

Fi − F1 − Fn +
n∑

i=0

Fi − Fn − Fn−1

Everything cancels out (usually...) !

n∑
i=1

Fi = 2Fn + Fn−1 − F2 = (Fn+1 + Fn)− 1 = Fn+2 − 1

Approach: Just Keep Summing!

What happens if we sum each recurrence in this example?

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2

If SA
n =

∑n
i=0 Ai and SB

n =
∑n

i=0 Bi then these recurrences sum
to: (after simplifying)

SA + SB = 2An + A0 − A1 + Bn + B0

SA + SB = An + A0 + 2Bn + 2Bn−1 − B0 − B1

I A priori, this system cannot be solved for SA and SB .

I Sometimes this technique will work. (formalized later)

I How do we continue?

Definition (Mutual Recurrence)

Let K be a field, and m, d ∈ Z+. A system of mutual linear
recurrence relations with constant coefficients on K of order d in
m variables is a set of m functions A1(n), . . . ,Am(n) mapping N
into K satisfying


A1(n)
A2(n)

...
Am(n)

 = M1


A1(n − 1)
A2(n − 1)

...
Am(n − 1)

+· · ·+Md


A1(n − d)
A2(n − d)

...
Am(n − d)

+


g1(n)
g2(n)

...
gm(n)


for some M1, . . . ,Md ∈ Mm(K) and g1, . . . , gm mapping N→ K .

Example

This mutual recurrence

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2

can be written as

(
A1(n)
A2(n)

)
=

(
2 1
1 0

)(
A1(n − 1)
A2(n − 1)

)
+

(
0 0
0 1

)(
A1(n − 2)
A2(n − 2)

)
.

The order, d , is 2. The goal is to express both

n∑
i=0

Ai and
n∑

i=0

Bi

as a linear combination of the functions
An,An−1,An−2,Bn,Bn−1,Bn−2 over K along with an
inhomogeneous term depending on initial conditions.

Homogeneous Case

Let E denote the shift operator, that is EAn = An+1. A mutual
recurrence over K can be written as a set of polynomials in K [E].

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2
⇔ (E − 2)A(n)− B(n) = 0,

(E 2 − 2)B(n)− EA(n) = 0.

One can solve a system like this for An and Bn in K (E). In this
case for B(n) we have

(E 3 − 2E 2 − 3E + 4)Bn = 0

so

Bn = 2Bn−1 + 3Bn−2 − 4Bn−3

Can solve this using well-known methods [Greene & Wilf, 2007],
[Ravenscroft & Lamagna, 2008]

Non-Homogeneous Case

For a given mutual recurrence A1, . . . ,Am with order d , define

S(f (n)) =
n∑

i=d

f (i)

for any f : N→ K . Also define

Si (n) = S1
i (n) = S(Ai (n))

S j
i (n) = S(S j−1

i (n)).

Let V be the vector space over K that has each defined Ai (n − j)
and S j

i (n) as basis elements.

S is linear on V ! It’s easy to explicitly compute the action of S on
each member of the basis.

Re-Writing the Recurrence


A1(n)
A2(n)

...
Am(n)

 = M1


A1(n − 1)
A2(n − 1)

...
Am(n − 1)

+· · ·+Md


A1(n − d)
A2(n − d)

...
Am(n − d)

+


g1(n)
g2(n)

...
gm(n)



(
I −M1 −M2 · · · −Md

)



A1(n)
A2(n)

...
Am(n)

...

A1(n − d)
A2(n − d)

...
Am(n − d)


=


g1(n)
g2(n)

...
gm(n)

 .

Re-Writing the Recurrence 2

(
0 · · · 0 | I −M1 −M2 · · · −Md

)



Sd
1 (n)

Sd
2 (n)

...
Sd
m(n)

...

S1(n)
S2(n)

...
Sd(n)

A1(n)
A2(n)

...
Am(n)

...

A1(n − d)
A2(n − d)

...
Am(n − d)



=


g1(n)
g2(n)

...
gm(n)

 .

Shorthand:
(
0 · · · 0 | I −M1 · · · −Md | G

)

Row-Operations

Shorthand:
(
0 · · · 0 | I −M1 · · · −Md | G

)
Given the augmented matrix, we can perform four row operations:

1. Swap two rows

2. Multiply a row by a scalar in K

3. Add one row to another

4. Apply the summation operator to a row

The goal is to make the new augmented matrix look like this:(
0 · · · 0 I | X1 · · · Xm+1 | Y

)
so that the Si (n) can be solved in terms of the Ai (n − j).

There is a detailed example in the paper.

The Algorithm

Take an augmented matrix,

U =
(

0 I −M1 −M2 · · · −Md G
)
.

For each t ≥ 0 do the following starting with U:

1. Augment the matrix with t + 1 blocks of m×m zero matrices on
the left-hand side.

2. Duplicate each block row of the matrix t times. Number the
block rows from top to bottom starting at 1.

3. Apply S to the (t + 2− i)th block row i times for 1 ≤ i ≤ t + 1.
4. If placing this matrix in row-reduced echelon form results in a

matrix of the form(
0 0 · · · 0 I ∗ ∗ · · · ∗ ∗

)
then stop; back-substitute to solve for each Si (n) when
i ∈ {1, . . . ,m}. Otherwise increment t by one and continue.

Results

I If the algorithm terminates, the solution is correct.

I If A1 + · · ·+ Ad does not have an eigenvalue of 1, the
algorithm terminates when t = 1. This is common.

Theorem
If m = 1, that is, there is only a single recurrence, the algorithm
terminates.

Theorem
If d = 1, that is, each Ai (n) depends only on various Aj(n − 1),
then the algorithm terminates.

Runtime Analysis

I In both the m = 1 and d = 1 case, an appropriate value of t
can be determined from counting the factors of (x − 1) in the
appropriate polynomial. This can be bounded by the
polynomial’s degree.

I For m = 1, t ≤ d .
I For d = 1, t ≤ m.
I This suggests the existence of a more general polynomial that

could be used to finish the proof for all cases.

I For the cases where termination is known, the algorithm runs
in polynomial time, namely O(m3(t + d)3) ⊂ O(m6d3).

I This bound is not tight.
I The bottleneck is in the row-reduction algorithm. For

simplicity, O(n3) was used as the running time for this applied
to an n × n matrix.

I Easy to implement!

References

Greene, Curtis, & Wilf, Herbert S. 2007.
Closed form summation of C -finite sequences.
Transactions of the American Mathematical Society, 359,
1161–1189.

Ravenscroft, Robert A., & Lamagna, Edmund A. 2008.
Summation of linear recurrence sequences.
Pages 125–132 of: Milestones in Computer Algebra.

Questions?

Berkeley Churchill <berkeley@berkeleychurchill.com>

You can find copies of these slides at
http://www.berkeleychurchill.com/research

	Introduction
	Problem Statement
	Previous Work

	Methods
	Formalization
	Homogeneous Case
	Summation Operator

	Conclusion

