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Problem Statement

How can computers determine summation identities for recursive
sequences in a “nice” way?
For example, consider a mutual recurrence similar to this:

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2.

Is there a way for a computer to derive a general formula for∑n
i=0 Ai?

I The algorithm should apply to any mutual recurrence.

I Want solution in terms of the original sequence itself

I E.g. for the Fibonacci sequence,
∑n

i=0 Fi = Fn+2 − 1.

I Algorithm should handle inhomogeneous terms

I Previously solved for a single recurrence
[Greene & Wilf, 2007], [Ravenscroft & Lamagna, 2008]



Example: Fibonacci Sequence

Solution [Ravenscroft & Lamagna, 2008]: Sum the recurrence itself!

Fn = Fn−1 + Fn−2

Fn−1 = Fn−2 + Fn−3

...

+ F2 = F1 + F0
n∑

i=2

Fi =
n−1∑
i=1

Fi +
n−2∑
i=0

Fi

Then adjust the limits:

n∑
i=0

Fi − F1 − F2 =
n∑

i=0

Fi − F1 − Fn +
n∑

i=0

Fi − Fn − Fn−1

Everything cancels out (usually...) !

n∑
i=1

Fi = 2Fn + Fn−1 − F2 = (Fn+1 + Fn)− 1 = Fn+2 − 1



Approach: Just Keep Summing!

What happens if we sum each recurrence in this example?

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2

If SA
n =

∑n
i=0 Ai and SB

n =
∑n

i=0 Bi then these recurrences sum
to: (after simplifying)

SA + SB = 2An + A0 − A1 + Bn + B0

SA + SB = An + A0 + 2Bn + 2Bn−1 − B0 − B1

I A priori, this system cannot be solved for SA and SB .

I Sometimes this technique will work. (formalized later)

I How do we continue?



Definition (Mutual Recurrence)

Let K be a field, and m, d ∈ Z+. A system of mutual linear
recurrence relations with constant coefficients on K of order d in
m variables is a set of m functions A1(n), . . . ,Am(n) mapping N
into K satisfying


A1(n)
A2(n)

...
Am(n)

 = M1


A1(n − 1)
A2(n − 1)

...
Am(n − 1)

+· · ·+Md


A1(n − d)
A2(n − d)

...
Am(n − d)

+


g1(n)
g2(n)

...
gm(n)


for some M1, . . . ,Md ∈ Mm(K ) and g1, . . . , gm mapping N→ K .



Example

This mutual recurrence

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2

can be written as

(
A1(n)
A2(n)

)
=

(
2 1
1 0

)(
A1(n − 1)
A2(n − 1)

)
+

(
0 0
0 1

)(
A1(n − 2)
A2(n − 2)

)
.

The order, d , is 2. The goal is to express both

n∑
i=0

Ai and
n∑

i=0

Bi

as a linear combination of the functions
An,An−1,An−2,Bn,Bn−1,Bn−2 over K along with an
inhomogeneous term depending on initial conditions.



Homogeneous Case

Let E denote the shift operator, that is EAn = An+1. A mutual
recurrence over K can be written as a set of polynomials in K [E ].

An = 2An−1 + Bn−1

Bn = An−1 + 2Bn−2
⇔ (E − 2)A(n)− B(n) = 0,

(E 2 − 2)B(n)− EA(n) = 0.

One can solve a system like this for An and Bn in K (E ). In this
case for B(n) we have

(E 3 − 2E 2 − 3E + 4)Bn = 0

so

Bn = 2Bn−1 + 3Bn−2 − 4Bn−3

Can solve this using well-known methods [Greene & Wilf, 2007],
[Ravenscroft & Lamagna, 2008]



Non-Homogeneous Case

For a given mutual recurrence A1, . . . ,Am with order d , define

S(f (n)) =
n∑

i=d

f (i)

for any f : N→ K . Also define

Si (n) = S1
i (n) = S(Ai (n))

S j
i (n) = S(S j−1

i (n)).

Let V be the vector space over K that has each defined Ai (n − j)
and S j

i (n) as basis elements.

S is linear on V ! It’s easy to explicitly compute the action of S on
each member of the basis.



Re-Writing the Recurrence


A1(n)
A2(n)

...
Am(n)

 = M1


A1(n − 1)
A2(n − 1)

...
Am(n − 1)

+· · ·+Md


A1(n − d)
A2(n − d)

...
Am(n − d)

+


g1(n)
g2(n)

...
gm(n)



(
I −M1 −M2 · · · −Md

)



A1(n)
A2(n)

...
Am(n)

...

A1(n − d)
A2(n − d)

...
Am(n − d)


=


g1(n)
g2(n)

...
gm(n)

 .



Re-Writing the Recurrence 2

(
0 · · · 0 | I −M1 −M2 · · · −Md

)



Sd
1 (n)

Sd
2 (n)

...
Sd
m(n)

...

S1(n)
S2(n)

...
Sd(n)

A1(n)
A2(n)

...
Am(n)

...

A1(n − d)
A2(n − d)

...
Am(n − d)



=


g1(n)
g2(n)

...
gm(n)

 .

Shorthand:
(
0 · · · 0 | I −M1 · · · −Md | G

)



Row-Operations

Shorthand:
(
0 · · · 0 | I −M1 · · · −Md | G

)
Given the augmented matrix, we can perform four row operations:

1. Swap two rows

2. Multiply a row by a scalar in K

3. Add one row to another

4. Apply the summation operator to a row

The goal is to make the new augmented matrix look like this:(
0 · · · 0 I | X1 · · · Xm+1 | Y

)
so that the Si (n) can be solved in terms of the Ai (n − j).

There is a detailed example in the paper.



The Algorithm

Take an augmented matrix,

U =
(

0 I −M1 −M2 · · · −Md G
)
.

For each t ≥ 0 do the following starting with U:

1. Augment the matrix with t + 1 blocks of m×m zero matrices on
the left-hand side.

2. Duplicate each block row of the matrix t times. Number the
block rows from top to bottom starting at 1.

3. Apply S to the (t + 2− i)th block row i times for 1 ≤ i ≤ t + 1.
4. If placing this matrix in row-reduced echelon form results in a

matrix of the form(
0 0 · · · 0 I ∗ ∗ · · · ∗ ∗

)
then stop; back-substitute to solve for each Si (n) when
i ∈ {1, . . . ,m}. Otherwise increment t by one and continue.



Results

I If the algorithm terminates, the solution is correct.

I If A1 + · · ·+ Ad does not have an eigenvalue of 1, the
algorithm terminates when t = 1. This is common.

Theorem
If m = 1, that is, there is only a single recurrence, the algorithm
terminates.

Theorem
If d = 1, that is, each Ai (n) depends only on various Aj(n − 1),
then the algorithm terminates.



Runtime Analysis

I In both the m = 1 and d = 1 case, an appropriate value of t
can be determined from counting the factors of (x − 1) in the
appropriate polynomial. This can be bounded by the
polynomial’s degree.

I For m = 1, t ≤ d .
I For d = 1, t ≤ m.
I This suggests the existence of a more general polynomial that

could be used to finish the proof for all cases.

I For the cases where termination is known, the algorithm runs
in polynomial time, namely O(m3(t + d)3) ⊂ O(m6d3).

I This bound is not tight.
I The bottleneck is in the row-reduction algorithm. For

simplicity, O(n3) was used as the running time for this applied
to an n × n matrix.

I Easy to implement!
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Questions?

Berkeley Churchill <berkeley@berkeleychurchill.com>

You can find copies of these slides at
http://www.berkeleychurchill.com/research
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